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Preface

The programmable logic controller represents a key factor in industrial
automation. Its use permits flexible adaptation to varying processes as
well as rapid fault finding and error elimination.

This textbook explains the design of a programmable logic controller
and its interaction with peripherals.

One of the main focal points of the textbook deals with the new interna-
tional standard for PLC programming, the IEC-1131, Part 3. This stand-
ard takes into account expansions and developments, for which no
standardised language elements existed hitherto.

The aim of this new standard is to standardise the design, functionality
and the programming of a PLC in such a way as to enable the user to
easily operate with different systems.

In the interest of continual further improvement, all readers of this book
are invited to make contributions by way suggestions, ideas and con-
structive criticism.

February 1995 The authors
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automation technology
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The first Programmable Logic Controller (PLC) was developed by a
group of engineers at General Motors in 1968, when the company were
looking for an alternative to replace complex relay control systems.

1.1 Introduction

The new control system had to meet the following requirements:

Simple programming
Program changes without system intervention
(no internal rewiring)
Smaller, cheaper and more reliable than corresponding relay control
systems
Simple, low cost maintenance

Subsequent development resulted in a system which enabled the
simple connection of binary signals. The requirements as to how these
signals were to be connected was specified in the control program.
With the new systems it became possible for the first time to plot sig-
nals on a screen and to file these in electronic memories.

Since then, three decades have passed, during which the enormous
progress made in the development of micro electronics did not stop
short of programmable logic controllers. For instance, even if program
optimisation and thus a reduction of required memory capacity initially
still represented an important key task for the programmer, nowadays
this is hardly of any significance.

Moreover, the range of functions has grown considerably. 15 years
ago, process visualisation, analogue processing or even the use of a
PLC as a controller, were considered as Utopian. Nowadays, the sup-
port of these functions forms an integral part of many PLCs.

The following pages in this introductory chapter outline the basic design
of a PLC together with the currently most important tasks and applica-
tions.

Every system or machine has a controller. Depending on the type of
technology used, controllers can be divided into pneumatic, hydraulic,
electrical and electronic controllers. Frequently, a combination of differ-
ent technologies is used. Furthermore, differentiation is made between
hard-wired programmable (e.g. wiring of electro-mechanical or elec-
tronic components) and programmble logic controllers. The first is used
primarily in cases, where any reprogramming by the user is out of the
question and the job size warrants the development of a special con-
troller. Typical applications for such controllers can be found in auto-
matic washing machines, video cameras, cars.

1.2 Areas 
of application
of a PLC
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However, if the job size does not warrant the development of a special
controller or if the user is to have the facility of making simple or inde-
pendent program changes, or of setting timers and counters, then the
use of a universal controller, where the program is written to an elec-
tronic memory, is the preferred option. The PLC represents such a
universal controller. It can be used for different applications and, via the
program installed in its memory, provides the user with a simple means
of changing, extending and optimising control processes.

The original task of a PLC involved the interconnection of input  signals
according to a specified program and, if "true", to switch the corre-
sponding output. Boolean algebra forms the mathematical basis for this
operation, which recognises precisely two defined statuses of one vari-
able: "0" and "1" (see also chapter 3). Accordingly, an output can only
assume these two statuses. For instance, a connected motor could
therefore be either switched on or off, i.e. controlled.

Fig. B1.1:
Example of a
PLC application
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This function has coined the name PLC: Programmable logic controller ,
i.e. the input/output behaviour is similar to that of an electro-magnetic
relay or pneumatic switching valve controller; the program is stored in
an electronic memory.

However, the tasks of a PLC have rapidly multiplied: Timer and counter
functions, memory setting and resetting, mathematical computing oper-
ations all represent functions, which can be executed by practically any
of today’s PLCs.

The demands to be met by PLC’s continued to grow in line with their
rapidly spreading usage and the development in automation technol-
ogy. Visualisation, i.e. the representation of machine statuses such as
the control program being executed, via display or monitor. Also con-
trolling, i.e. the facility to intervene in control processes or, alternatively,
to make such intervention by unauthorised persons impossible. Very
soon, it also became necessary to interconnect and harmonise individ-
ual systems controlled via PLC by means of automation technology.
Hence a master computer facilitates the means to issue higher-level
commands for program processing to several PLC systems.

The networking of several PLCs as well as that of a PLC and master
computer is effected via special communication interfaces. To this ef-
fect, many of the more recent PLCs are compatible with open, stand-
ardised bus systems, such as Profibus to DIN 19 245. Thanks to the
enormously increased performance capacity of advanced PLCs, these
can even directly assume the function of a master computer.

At the end of the seventies, binary inputs and outputs were finally ex-
panded with the addition of analogue inputs and outputs, since many of
today’s technical applications require analogue processing (force meas-
urement, speed setting, servo-pneumatic positioning systems). At the
same time, the acquisition or output of analogue signals permits an
actual/setpoint value comparison and as a result the realisation of auto-
matic control engineering functions, a task, which widely exceeds the
scope suggested by the name (programmable logic controller).
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The PLCs currently on offer in the market place have been adapted to
customer requirements to such an extent that it has become possible to
purchase an eminently suitable PLC for virtually any application. As
such, miniature PLCs are now available with a minimum number of in-
puts/outputs starting from just a few hundred Pounds. Also available
are larger PLCs with 28 or 256 inputs/outputs.

Many PLCs can be expanded by means of additional input/output, anal-
ogue, positioning and communication modules. Special PLCs are avail-
able for safety technology, shipping or mining tasks. Yet further PLCs
are able to process several programs simultaneously – (multitasking).
Finally, PLCs are coupled with other automation components, thus cre-
ating considerably wider areas of application.

The term ’programmable logic controller’ is defined as follows by IEC
1131, Part 1:

1.3 Basic design 
of a PLC

"A digitally operating electronic system, designed for use in an industrial
environment, which uses a programmable memory for the internal stor-
age of user-oriented instructions for implementing specific functions
such as logic, sequencing, timing, counting and arithmetic, to control,
through digital or analog inputs and outputs, various types of machines
or processes. Both the PC and its associated peripherals are designed
so that they can be easily integrated into an industrial control system
and easily used in all their intended functions."

Fig. B1.2:
Example of a PLC:
AEG Modicon A120
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A programmable logic controller is therefore nothing more than a com-
puter, tailored specifically for certain control tasks.

Fig. B1.3 illustrates the system components of a PLC.

The function of an input module is to convert incoming signals into sig-
nals which can be processed by the PLC and to pass these to the
central control unit. The reverse task is performed by an output module.
This converts the PLC signal into signals suitable for the actuators. 

The actual processing of the signals is effected in the central control
unit in accordance with the program stored in the memory.

The program of a PLC can be created in various ways: via assembler-
type commands in ’statement list’, in higher-level, problem-oriented lan-
guages such as structured text or in the form of a flow chart such as
represented by a sequential function chart. In Europe, the use of func-
tion block diagrams based on function charts with graphic symbols for
logic gates is widely used. In America, the ’ladder diagram’ is the
preferred language by users.

Depending on how the central control unit is connected to the input and
output modules, differentiation can be made between compact PLCs
(input module, central control unit and output module in one housing) or
modular PLCs.

PLC-program

Central control unitInput module Output module

ActuatorsSensors
Fig. B1.3:

System components
of a PLC
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Fig. B1.4 shows the FX0 controller by Mitsubishi representing a com-
pact PLC as an example.

Modular PLCs may be configured individually. The modules required
for the practical application – apart from digital input/output modules
which can, for instance, include analogue, positioning and communica-
tion modules – are inserted in a rack, where individual modules are
linked via a bus system. This type of design is also known as series
technology. Two examples of modular PLCs are shown in figs. B1.2
and B1.4. These represent the familiar modular PLC series by AEG
Modicon and the new S7-300 series by Siemens.

A wide range of variants exists, particularly in the case of more recent
PLCs. These include both modular as well as compact characteristics
and important features such as spacing saving, flexibility and scope for
expansion.

The card format PLC is a special type of modular PLC, developed  dur-
ing the last few years. With this type, individual or a number of printed
circuit board modules are in a standardised housing. The Festo FPC
405 is representative of this type of design (Fig. B1.4).

Fig. B1.4:
Compact PLC
(Mitsubishi FX0),
modular PLC
(Siemens S7-300),
PLC plug-in cards
(Festo FPC 405)

              B-7
Chapter 1

Festo Didactic ••  TP301



The hardware design for a programmable logic controller is such that it
is able to withstand typical industrial environments as regard signal
levels, heat, humidity, fluctuations in current supply and mechanical
impact.

Previously valid PLC standards focussing mainly on PLC programming
were generally geared to current state of the art technology in Europe
at the end of the seventies. This took into account non-networked PLC
systems, which primarily execute logic operations on binary signals.
DIN 19 239, for example, specifies programming languages which
possess the corresponding language commands for these applications.

1.4 The new 
PLC standard
IEC 1131

Previously, no equivalent, standardised language elements existed for
the PLC developments and system expansions made in the eighties,
such as processing of analogue signals, interconnection of intelligent
modules, networked PLC systems etc. Consequently, PLC systems by
different manufacturers required entirely different programming.

Since 1992, an international standard now exists for programmable
logic controllers and associated peripheral devices (programming and
diagnostic tools, testing equipment, man-to-machine interfaces etc.). In
this context, a device configured by the user and consisting of the
above components is known as a PLC system.

The new IEC 1131 standard consists of five parts:

Part 1: General information
Part 2: Equipment requirements and tests
Part 3: Programming languages
Part 4: User guidelines (in preparation with IEC)
Part 5: Messaging service specification (in preparation with IEC)

Parts 1 to 3 of this standard were adopted unamended as European
Standard EN 61 131, Parts 1 to 3. As such, they also hold the status of
a German standard. 

The purpose of the new standard was to define and standardise the
design and functionality of a PLC and the languages required for pro-
gramming to the extent where users were able to operate using differ-
ent PLC systems without any particular difficulties.
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The next chapters will be dealing with this standard in greater detail.
However, for the moment the following information should suffice:

The new standard takes into account as many aspects as possible
regarding the design, application and use of PLC systems.
The extensive specifications serve to define open, standardised PLC
systems.
Manufacturers must conform to the specifications of this standard
both with regard to purely technical requirements for the PLC as well
as the programming of controllers.
Any variations must be fully documented for the user.

After initial reservations, a relatively large group of interested people
(PLCopen) has been formed to support this standard. A large number
of major PLC suppliers are members of the association, i.e. Allen Brad-
ley, Klöckner-Moeller, Philips, to mention a few. PLC manufacturers
such as Siemens or Mitsubishi also offer control and programming sys-
tems conforming to IEC-1131.

The initial programming systems are already available in the market
and others are being developed at the time of going to press. The norm
therefore stands a good chance of being accepted and succeeding. Not
least, it is hoped that this textbook will, to a certain extent, help to con-
tribute to this.
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Chapter 2

Fundamentals
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Characteristic of the decimal number system used in general is the
linear array of digits and their significant placing. The number 4344, for
instance, can be represented as follows:

2.1 The decimal
number system

4344 = 4 x 1000 + 3 x 100 + 4 x 10 + 4 x 1

Number 4 on the far left is of differing significance to that of number 4
on the far right. 

The basis of the decimal number system is the availability of 10 differ-
ent digits (decimal: originating from the Latin ’decem’ = 10 ). These 10
different digits permit counting from 0 to 9. If counting is to exceed the
number 9, this constitutes a carry over to the next place digit. The signi-
ficance of this place is 10, and the next carry over takes place when 99
is reached.

The number 71.718.711 is to be used as an example:

As can be seen from the above, the significance of the "7" on the far
left is 70.000.000 = 70 million, whereas the significance of the "7" in the
third place from the right is 700.

The digit on the far right is referred to as the least significant digit, and
the digit on the far left as the most significant digit.

Any number system can be configured on the basis of this example, the
fundamental structure can be applied to number systems of any num-
ber of digits. Consequently, any computing operations and computing
methods which use the decimal number system can be applied with
other number systems.

We are indebted to Leibnitz, who applied the structures of the decimal
number system to two-digit calculation. As long ago as 1679, this cre-
ated the premises essential for the development of the computer, since
electrical voltage or electrical current only permits a calculation using
just two values: e.g. "current on", "current off". These two values are
represented in the form of digits: "1" and "0".

2.2 The binary
number system

107 106 105 104 103 102 101 100

7 1 7 1 8 7 1 1
Example
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If one were to be limited to exactly 2 digits per place of a number, then
a number system would be configured as follows:

The principle is exactly the same as that of the method used to create
a decimal number. However, only two digits are available, which is why
the significant place is not calculated to the base 10x, but to the base
2x. Hence the lowest significant number on the far right is0 = 1, and of
the next place 21 = 2 etc. Because of the exclusive use of two digits,
this number system is known as the binary or also the dual number
system. 

Up to a maximum of

28 – 1 = 256 – 1 = 255

can be calculated with eight places, which would be the number
1111 11112.

The individual places of the binary number system can adopt one of the
two digits 0 or 1. This smallest possible unit of the binary system is
termed 1 bit. 

In the above example, a number consisting of 8 bits, i.e. one byte, has
been configured (in a computer using 8 electrical signals representing
either "voltage available" or "voltage not available" or "current on" or
"current off".) The number considered, 1011 00012, assumes the deci-
mal value 17710.

27=128 26=64 25=32 24=16 23=8 22=4 21=2 20=1

1 0 1 1 0 0 0 1
Example

1 x 27 0 x 26 1 x 25 1 x 24 0 x 23 0 x 22 0 x 21 1 x 20

= 128 + 32 + 16 + 1

= 177
Example
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For people used to dealing with the decimal system, binary numbers
are difficult to read. For this reason , a more easily readable numeral
representation was introduced, i.e. the binary coded decimal notation,
the so-called BCD code (binary coded decimal). With this BCD code,
each individual digit of the decimal number system is represented by a
corresponding binary number:

2.3 The BCD code

4 digits in binary notation are therefore required for the 10 digits in the
decimal system. The discarded place (in binary notation, the numbers 0
to 15 may be represented with 4 digits) is accepted for the sake of
clarity.

The decimal number 7133 is thus represented as follows in the BCD
code:

0111 0001 0011 0011BCD

16 bits are therefore required to represent a four digit decimal number
in the BCD code. BCD coded numbers are often used for seven seg-
ment displays and coding switches.

The use of binary numbers is often difficult for the uninitiated and the
use of the BCD code takes up a lot of space. This is why the octal and
the hexadecimal system were developed. Three digits are always com-
bined in the case of the octal number system. This permits counting
from 0 to 7, i.e. counting in "eights".

2.4 The hexadecimal
number system

010 0000BCD

110 0001BCD

210 0010BCD

310 0011BCD

410 0100BCD

510 0101BCD

610 0110BCD

710 0111BCD

810 1000BCD

910 1001BCD

Table B2.1:
Representation of decimal

numbers in BCD code
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Alternatively, 4 bits are combined with the hexadecimal number system.
4 bits permit the representation of the numbers 0 to 15, i.e. counting in
"sixteens". The digits 0 to 9 are used to represent these numbers in
digits, followed by the letters A, B, C, D, E and F where A = 10, B = 11,
C = 12, D = 13, E = 14 and F = 15. The significant place of the individ-
ual digits is to the base 16.

The number 87BC16 given as an example therefore reads as follows:

8 x 163 + 7 x 162 + 11 x 161 + 12 x 160 = 34 74810

Up to now, we have dealt solely with whole positive numbers, not tak-
ing into account negative numbers. To enable working with these nega-
tive numbers, it was decided that the most significant bit on the far left
of a binary number is to be used to represent the preceding sign: "0"
thus corresponds to "+" and "1" corresponds to "–".

2.5 Signed
binary numbers

Hence 1111 11112 = -12710 and 0111 11112 = +12810

Since the most significant bit has been used, one bit less is available
for the representation of a signed number. The following range of
values is obtained for the representation of a 16 digit binary number:

Although it is now possible for whole positive and whole signed num-
bers to be represented with 0 or 1 , there is still the need for points or
real numbers.

2.6 Real numbers

In order to represent a real number in computer binary notation, the
number is split into two groups, a power of ten and a multiplication
factor. This is also known as the scientific representation of digits.

163=4096 162=256 161=16 160=1

8 7 B C
Example

Integer Range of values

unsigned 0 to 65535

signed -32768 to +32767 

Table B2.2:
Range of values for
binary numbers
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The number 27,3341 is thus converted into 273 341 x 10-4. Two whole
signed numbers are therefore required for a real number to be repre-
sented in a computer.

As has already become clearly apparent in the previous section, all
computers and as such all PLCs operate using binary or digital signals.
By binary signal, we understand a signal which recognises only two
defined values.

2.7 Generation of
binary and
digital signals

These values are termed "0" or "1", the terms "low" and "high"  are also
used. The signals can be very easily realised with contacting compo-
nents. An actuated normally open contact corresponds to a logic 1-sig-
nal and an unactuated one to a logic 0-signal. When working with con-
tactless components, this can give rise to certain tolerance bands. For
this reason, certain voltage ranges have been defined as logic 0 or
logic 1 ranges.

1

t
0Fig. B2.1:

Binary signal

 V

0

5

11

30

t-3

1 - range

0 - range

Fig. B2.2:
Voltage ranges
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IEC 1131-2 defines a value range of -3 V to 5 V as logic 0-signal, and
11 V to 30 V as logic 1-signal (for contactless sensors). This is binding
for PLCs, whose device technology is to conform to IEC 1131-2. In
current practice, however, other voltage ranges can often be found for
logic 0- and 1-signal. Widely used are: -30 V to +5 V as logic 0, 13 V to
30 V as logic 1.

Unlike binary signals, digital signals can assume any value. These are
also referred to as value stages. A digital signal is thus defined by any
number of value stages. The change between these is non-sequential.
The following illustration shows three possible methods of converting an
analogue signal into a digital signal.

Digital signals may be formed from analogue signals. This method is for
instance used for analogue processing via PLC. Accordingly, the ana-
logue input signal within a range of 0 to 10 V is reduced into a series of
step values. Depending on the quality of the PLC and the possible step
height set, the digital signal would thus be able to operate in steps of
value of 0.1 V, 0.01 V or 0.001 V. Naturally, the smallest range is se-
lected in this instance in order for the analogue signal to be reproduced
as accurately as possible.

t
0

V

1

2

3

4

5

6 Digital signal
on 0.5V basis

Digital
signal on
3V basis

Analogue signal

Digital signal
on 1V basis

Fig. B2.3:
Conversion of an analogue
signal into a digital signal
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One simple example of an analogue signal is pressure, which is
measured and displayed by a pressure gauge. The pressure signal
may assume any intermediate value between its minimum and maxi-
mum values. Unlike the digital signal, it changes continually. In the case
of the processing of analogue values via a PLC, as described, anal-
ogue voltage signals are evaluated and converted. 

On the other hand, digital signals can be formed by adding together a
certain number of binary signals. In this way, again as described in the
above paragraph, it is also possible to generate a digital signal with 256
step values.

This process is for instance used to implement timer and counter func-
tions.

Bit No. 7 6 5 4 3 2 1 0 Digital value

Example 1 1 0 1 1 1 0 1 1 187

Example 2 0 0 1 1 0 0 1 1 51

Example 3 0 0 0 0 0 0 0 0 0
Example
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Chapter 3

Boolean operations
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As described in the previous chapter, any computer and equally any
PLC operates using the number system to the base 2. This also applies
to the octal (23) and the hexadecimal systems (24). The individual vari-
able can therefore assume only two values, "0" or "1". Special algo-
rithms have been introduced to be able to link these variables – the
so-called boolean algebra. This can be clearly represented by means of
electrical contacts.

3.1 Basic logic
functions

Negation (NOT function)
The push button shown represents a normally closed contact. When
this is unactuated, lamp H1 is illuminated, whereas in the actuated
state, lamp H1 goes off.

Push button S1 acts as signal input, the lamp forms the output. The
actual status can be recorded in a truth table:

The boolean equation is therefore as follows:

 I  = O  (read: Not I equals O)

S1
(I)

H1
(O)

24V

0V
Fig. B3.1:

Circuit diagram

I O

0 1

1 0
Truth table

B-20              
Chapter 3

TP301 ••  Festo Didactic



The logic symbol is:

If 2 negations are switched in succession, then these cancel one an-
other.

Conjunction (AND-function)
If two normally open contacts are switched in series, the actuated lamp
is illuminated only if both push buttons are actuated.

1I O

Fig. B3.2:
NOT function

I1I 1I

I = I

Fig. B3.3:
2 logic NOT functions

H1
(O)

24V

0V

S2
(I2)

S1
(I1)

Fig. B3.4:
Circuit diagram
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The truth table assigns the conjunction. The output assumes 1 only if
both input 1 and input 2 produce a "1"-signal. This is referred to as an
AND operation, which is represented as follows as an equation:

I1 ∧  I2 = O

In addition, the following algorithms apply for the conjunction:

a ∧ 0 = 0

a ∧ 1 = a

a ∧ a = 0

a ∧ a = a

&I1

I2
O

Fig. B3.5:
AND function

I1 I2 O

0 0 0

0 1 0

1 0 0

1 1 1
Truth table
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Disjunction (OR-Function)
Another basic logic function is OR. If the 2 normally open contacts are
switched in parallel, then the lamp is illuminated whenever a least one
push button is pressed.

The logic operation is written in the form of the following equation:

I1 ∨ I2 = O

H1
(O)

24V

0V

S1
(I1)

S2
(I2)

Fig. B3.6:
Circuit diagram

>=1I1

I2
O

Fig. B3.7:
OR function

I1 I2 O

0 0 0

0 1 1

1 0 1

1 1 1
Truth table
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The following algorithms also apply for the OR-operation:

b ∨ 0 = b

b ∨ 1 = 1

b ∨ b = b

b ∨ b = 1

The electrical realisation of a NOT-/AND-/OR-operation has already
been described in section B3.1. Each of these operations can of course
also be realised pneumatically or electronically. Boolean algebra also
recognises the following logic operations. The following table provides
an overview of these.

3.2 Further logic 
operations

Table B3.1:
Logic connections

I = A

I O
0 0
1 1

I O
0 1
1 0

I1 I2
0 0
0 1

0
0

O

1 0
1 1

0
1

I1 I2
0 0
0 1

0
1

O

1 0
1 1

1
1

&I1 OI2

>=1I1 OI2

1 OI

1 OI

O

I1 I2

O

I1 I2

I O

I O

O

I1 I2

O

I1

I2

O

I

O

I

I1 O

I2

I2

OI1

R

R

+

I

R

-

O

I

R

O

+

-

Name

Identity

Negation

Conjunction

Equation Truth table log. symbols

Disjunction

pneumatic realisation electr. realisation electron. realisation

I = O

>I1 I2 = O

> I2 = OI1
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Table B3.1:
Logic connections 
(continued)

I1 I2
0 0
0 1

1
1

O

1 0
1 1

1
0

I1 I2
0 0
0 1

1
0

O

1 0
1 1

0
0

&I1 O
I2

>=1I1 O
I2

I1

K1

I1 K1

I1

I2

I1

I2

R

I1 I2
0 0
0 1

1
0

O

1 0
1 1

0
1

I1 I2
0 0
0 1

0
1

O

1 0
1 1

1
0

=
I1

OI2

1
I1

O
I2

I2

O

I1 I2

I1 I2

O

I1 I2

O

O

I2

K1 O

K1

I1

I2

O

I1

I2

O

R

O

I1

I2

R

O

R

I1 I2

I1 I2

O

>I1 I2>

>I1 I2 = O

>I1 I2>

>I1 I2 = O

>

I2 = OI1

>I1 I2 = O

OI2

I1

OI2

I1

Name

Antivalence
(exclusive
    OR)

Equivalence

NAND

Equation Truth table log. symbol

NOR

pneumatic  realisation electr. realisation electron. realisation
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Deriving boolean equations from the truth table
Often, the logic operations shown in the previous section are not
enough to adequately describe a status in control technology. 

3.3 Establishing
switching 
functions

Very often, there is a combination of different logic operations. The
logic connection in the form of a boolean equation can be easily estab-
lished from the truth table.

The example below should clarify this:

Sorting station task
Various parts for built-in kitchens are to be machined in a production
system (milling and drilling machine). The wall and door sections for
certain types of kitchen are to be provided with different drill holes. Sen-
sors B1 to B4 are intended for the detection of the holes.

Parts with the following hole patterns are for the ’Standard’ kitchen
type. These parts are to be advanced via the double-acting cylinder 1.0.

B1
B2

B3
B4

1.0

Fig. B3.8:
Sorting station
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Assuming that a drilled hole is read as a 1-signal, the following truth
table results.

a b c d y

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1
Truth table

b d

a

d

a

b d

d

a c

b d

a c

d
Fig. 3.9:
Hole pattern of parts
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Two options are available in order to derive the logic equation from this
table, which lead to two different expressions. The same result is ob-
tained, of course, since the same circumstances are desribed.

Standard form, disjunctive
In the disjunctive standard form, all conjunctions (AND-operations) of
input variables with the result 1, are carried out as a disjunctive oper-
ation (OR-operation). With signal status 0, the input variable is carried
out as a negated operation and with signal status 1 as a non-negated
operation.

In the case of the example given, the logic operation is therefore as
follows:

y = (a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ c ∧ d) ∨

(a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ c ∧ d)

Conjunctive standard form
In the conjunctive standard form, all disjunctions (OR-operations) of the
input variable producing the result 0, are carried out as a conjunctive
operation (AND-operation). In contrast with the disjunctive standard
form, in this instance, the input variable is negated with signal status "1"
and a non-negated operation carried out with signal status "0".

y = (a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ d) ∧ 

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ d) ∧ 

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ d) ∧ 

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ d)

Both equations for the example given are rather extensive, with that of
the conjunctive standard form being even longer still. This defines the
criteria for using the disjunctive or conjunctive standard from: The deci-
sion is made in favour of the shorter form of the equation. In this case,
the disjunctive standard form.

3.4 Simplification
of logic
functions

y = (a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ c ∧ d) ∨

(a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ c ∧ d)

This expression may be simplified with the help of a boolean algorithm.
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The most important rules in boolean algebra are shown below:

a ∨ 0 = a a ∧ 0 = 0
a ∨ 1 = 1 a ∧ 1 = a
a ∨ a = a a ∧ a = a
a ∨ a = 1 a ∧ a = 0

Commutative law
a ∨ b = b ∨ a a ∧ b = b ∧ a

Associative law
a ∨ b ∨ c = a ∨ (b ∨ c) = (a ∨ b) ∨ c
a ∧ b ∧ c = a ∧ (b ∧ c) = (a ∧ b) ∧ c

Distributive law
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

De Morgan’s rule
a ∨ b = a ∧ b a ∧ b = a ∨ b

Applied to the above example, the following result is obtained:

y = abcd ∨ abcd ∨ abcd ∨ abcd ∨ abcd ∨ abcd

= abcd ∨ abcd ∨ abcd ∨ abcd ∨ abd(c ∨ c)

= acd(b ∨ b) ∨ abd(c ∨ c) ∨ abd

= acd ∨ abd ∨ abd

= acd ∨ ad(b ∨ b)

= (ac ∨ a)d

= (c ∨ a)d

= cd ∨ ad

For reasons of clarity, the AND-operation symbol "∧" has been omitted
in the individual expressions.

The basic principle of simplification is in the factoring out of variables
and reducing to defined expressions. However, this method does re-
quire a sound knowledge of boolean algorithms plus a certain amount
of practice. Another option for simplification will be introduced in the
following section.
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In the case of the Karnaugh-Veitch diagram (KV diagram) the truth
table turns into a value table.

3.5 Karnaugh-Veitch
diagram

A total of 16 allocation options are available for the example, whereby
the value table must also have 16 squares.

a b c d y No.

0 0 0 0 0 1

0 0 0 1 1 2

0 0 1 0 0 3

0 0 1 1 0 4

0 1 0 0 0 5

0 1 0 1 1 6

0 1 1 0 0 7

0 1 1 1 0 8

1 0 0 0 0 9

1 0 0 1 1 10

1 0 1 0 0 11

1 0 1 1 1 12

1 1 0 0 0 13

1 1 0 1 1 14

1 1 1 0 0 15

1 1 1 1 1 16
Value table

cd cd cd cd

ab 1 2 3 4

ab 5 6 7 8

ab 9 10 11 12

ab 13 14 15 16Fig. B3.10:
Value table
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The results of the value table are transferred to the KV diagram accord-
ing to the diagram shown below. In principle, representation is again
possible in conjunctive or disjunctive standard form. The following, how-
ever, will be limited to the disjunctive standard form.

The next step consists of combining the statuses, for which "1" has
been entered in the value table. This is done in blocks whilst observing
the following rules:

The combining statuses in the KV diagram must be in the form of a
rectangle or square 
The number of combining statuses must be a result of function 2x.

This results in the following:

cd cd cd cd

ab 0 1 0 0

ab 0 1 0 0

ab 0 1 0 1

ab 0 1 0 1 Fig. B3.11:
Value table

cd cd cd cd

ab 0 1 0 0

ab 0 1 0 0

ab 0 1 0 1

ab 0 1 0 1

y1 y2 Fig. B3.12:
Value table
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The variable values are selected for the established block and these in
turn combined disjunctively.

y1 = cd

y2 = acd

y = cd ∧ acd

= (c ∨ ac) ∧ d

= (c ∨ a) ∧ d

= cd ∨ ad

Naturally, the KV diagram is not limited to 16 squares. 5 variables, for
instance, would result in 32 squares (25), and 6 variables 64 fields (26).
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Chapter 4

Design and
mode of operation of a PLC
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With computer systems, differentiation is generally made between
hardware, firmware and software. The same applies for a PLC, which is
essentially based on a micro computer.

4.1 Structure
of a PLC

The hardware  consists of the actual device technology, i.e. the printed
circuit boards, integrated modules, wires, battery, housing, etc.

firmware  is the software part, which is permanently installed and sup-
plied by the PLC manufacturer. This includes fundamental system rou-
tines, used for starting the processor after the power has been switched
on. Additionally, there is the operating system in the case of programm-
able logic controllers, which is generally stored in a ROM, a read-only
memory, or in the EPROM.

Finally, there is the software , which is the user program written by the
PLC user. User programs are usually installed in the RAM, a random
access memory, where they can be easily modified.

Fig. B4.1 illustrates the fundamental design of a microcomputer. PLC
hardware – as in the case of almost all of today’s microcomputer sys-
tems  – is based on a bus system. A bus system is a number of elec-
trial lines divided into address, data and control lines. The address line
is used to select the address of a connected bus station and the data
line to transmit the required information. The control lines are necessary
to activate the correct bus station either as a transmitter or sender.

Micro-
processor
(CPU)

Address bus

Operating-
system

Input-
module

ROM

Program
and data

RAM

Control bus

Data bus

Output-
module

Fig. B4.1:
Fundamental design
of a microcomputer
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The major bus stations connected to the bus system are the micropro-
cessor and the memory. The memory can be divided into memory for
the firmware and memory for the user program and data.

Depending on the structure of the PLC, the input and output modules
are connected to a single common bus or – with the help of a bus
interface – to an external I/O bus. Particularly in the case of larger
modular PLC systems, an external I/O bus would be more usual. 

Finally, a connection is required for a programming device or a PC,
nowadays mostly in the form of a serial interface.

Fig. B4.2 illustrates the Festo FPC 101 as an example.

Fig. B4.2:
Programmable logic
controller Festo FPC 101
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In essence, the central control unit of a PLC consists of a microcom-
puter. The operating system of the PLC manufacturer makes the
universal computer into a PLC, optimised specifically for control tech-
nology tasks.

4.2 Central control 
unit of a PLC

Design of the central control unit
Fig. B4.3 illustrates a simplified version of a microprocessor which rep-
resents the heart of a microcomputer.

A microprocessor consists in the main of an arithmetic unit, control unit
and a small number of internal memory units, so-called registers.

The task of the arithmetic unit  – the ALU (arithmetic logic unit) – is to
execute arithmetic and logic operations with the data transmitted.

The accumulator , AC for short, is a special register assigned directly
to the ALU. This stores both data to be processed as well as the result
of an operation.

The instruction register  stores a command called from the program
memory until this is decoded and executed.

A command  consists of an operation part and an address part. The
operation part indicates which logic operation is to be carried out. The
address part defines the operands (input signals, flags etc.), with which
a logic operation is to be executed. 

Command register

Program counter

Control bus
ALU

Accumulator

Arithmetic unit Control unit

Control bus

Address bus

Data bus

Fig. B4.3:
Design of a

microprocessor
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The program counter  is a register, which contains the address of the
next command to be processed. The following section will be dealing
with this in greater detail.

The control unit  regulates and controls the entire logic sequence of
the operations required for the execution of a command.

Instruction cycle within central control unit
Today’s conventional microcomputer systems operate according to the
so-called "von-Neumann principle". According to this principle, the com-
puter processes the program line by line. In simple terms, you could
say that each program line of the PLC user program is processed in
sequence.

This applies wholly irrespective of the programming language, in which
the PLC program is written, be it in the form of a text program (state-
ment list) or a graphic program (ladder diagram, sequential function
chart). Since these various forms of representation always result in a
series of program lines within the computer, they are subsequently pro-
cessed one after the other.

In principle, a program line, i.e. generally a command, is processed in
two steps:

fetching the command from the program memory
executing the command

+1

Memory

Addresses

Command Command
register

Control signals

Program-
counter

Microprocessor

Command

Address bus

Data bus

Fig. B4.4:
Command sequence
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The contents of the program counter are transferred to the address
bus. The control unit then causes the command at a specified address
in the program memory, to be relayed to the data bus. From there, the
command is read to the instruction register. Once the command has
been decoded, the control unit generates a sequence of control signals
for execution.

During the execution of a program, the commands are fetched in se-
quence. A mechanism which permits this sequence is therefore re-
quired. This task is performed by a simple incrementer, i.e. a step en-
abling facility in the program counter.

Programs for conventional data processing are processed once only
from top to bottom and then terminated. In contrast with this, the pro-
gram of a PLC is continually processed cyclically.

4.3 Function mode
of a PLC

Inputs
Image table

Inputs

PLC program

Image table
Outputs

Outputs

Fig. B4.5:
Cyclical processing of

a PLC program
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The characteristics of cyclical processing are:

As soon as the program has been executed once, it automatically
jumps back to the beginning and processing is repeated.
Prior to first program line being processed, i.e. at the beginning of
the cycle, the status of the inputs is stored in the image table. The
process image is a separate memory area accessed during a cycle.
The status of an input thus remains constant during a cycle even if it
has physically changed
Similar to inputs, outputs are not immediately set or reset during a
cycle, but the status stored intermediately in the process output
image. Only at the end of a cycle are all the outputs physically swit-
ched according to the logic status stored in the memory.

The processing of a program line via the central control unit of a PLC
takes time which, depending on PLC and operation can vary between a
few microseconds and a few milliseconds.

The time required by the PLC for a single execution of a program in-
cluding the actualisation and output of the process image, is termed the
cycle time. The longer the program is and the longer the respective
PLC requires to process an individual program line, the longer the
cycle. Realistic time periods for this are between approximately 1 and
100 milliseconds.

The consequences of cyclical processing of a PLC program using a
process image are as follows:

Input signals shorter than the cycle time may possibly not be re-
cognised.
In some cases, there may be a delay of two cycle times between the
occurence of an input signal and the desired reaction of an output to
this signal.
Since the commands are processed sequentially, the specific be-
haviour sequence of a PLC program may be crucial.

With some applications it is essential for inputs or outputs to be ac-
cessed directly during a cycle. This type of program processing, bypas-
sing of the process image, is therefore also supported by some PLC
systems.
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Programs specifically developed for particular applications require a
program memory, from which these can be read cyclically by the cen-
tral control unit. The requirements for such a program memory are rela-
tively simple to formulate:

4.4 Application
program
memory

It should be as simple as possible to modify or to newly create and
store the program with the help of a programming device or a PC
Safeguards should be in place to ensure that the program cannot be
lost – either during power failure or through interference voltage
The program memory should be cost effective
The program memory should be sufficiently fast in order not to delay
the operation of the central control unit.

Nowadays, three different types of memory are used in practice:

RAM
EPROM
EEPROM

RAM 
The RAM (random access memory) is a fast and highly cost effective
memory. Since the main memory of computers (i.e. PLCs) consist of
RAMs, they are produced in such high quantities that they are readily
available at low cost without competition.

RAMs are read/write memories and can be easily programmed and
modified.

The disadvantage of a RAM is that it is volatile, i.e. the program stored
in the RAM is lost in the event of power failure. This is why RAMs are
backed up by battery or accumulator. Since the service life and capac-
ity of modern batteries are rated for several years, RAM back-up is
relatively simple. Despite the fact that these are high performance bat-
teries it is nevertheless essential to replace the batteries in good time.
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EPROM
The EPROM (erasable programmable read-only memory) is also a fast
and low cost memory which, in comparison with RAM, has the added
advantage of being non-volatile, i.e. remanent. The memory contents
therefore remain intact even in the event of power failure.

For the purpose of a program modification, however, the entire memory
must first be erased and, after a cooling period, completely repro-
grammed. Erasing generally requires an erasing device, and a special
programming unit is used for programming.

Despite this relatively complex process of erasing, – cooling – repro-
gramming EPROMs are very frequently used in PLCs, since these rep-
resent reliable and cost effective memories. In practice, a RAM is often
used during the programming and commissioning phase of a machine.
On completion of the commissioning, the program is then transferred to
an EPROM. 

EEPROM
The EEPROM (electrically erasable programmable ROM), EEROM
(electrically erasable ROM) and EAROM (electrically alterable ROM) or
also flash-EPROM have been available for some time. The EEPROM in
particular, is used widely as an application memory in PLCs. The
EEPROM is an electrically erasable memory, which can be sub-
sequently written to.

Fig. B4.6:
Example of an EPROM
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The input module of a PLC is the module, which sensors are connected
to. The sensor signals are to be passed on to the central control unit.
The important functions of an input module (for the application) are as
follows:

4.5 Input
module

Reliable signal detection
Voltage adjustment of control voltage to logic voltage
Protection of sensitive electronics from external voltages
Screening of signals

The main component of today’s input modules which meets these re-
quirements is the optocoupler. 

The optocoupler transmits the sensor information with the help of light,
thereby creating an electrical isolation between the control and logic
circuits, thereby protecting  the sensitive electronics from spurious ex-
ternal voltages. Nowadays advanced optocouplers guarantee protection
for up to approximately 5 kV, which is adequate for industrial applica-
tions.

The adjustment of control and logic voltage , in the straightforward
case of a 24 V control voltage, can be effected with the help of a break-
down diode/resistor circuit. In the case of 220 V AC, a rectifier is con-
nected in series. 

Depending on PLC manufacturer reliable signal detection  is ensured
either by means of an additional downstream threshold detector or a
corresponding range of breakdown diodes and optocouplers. Precise
data regarding the signals to be detected is specified in DIN 19 240 .

Error
voltage

detection

Signal
delay

Optocoupler Signal to
the 
control unit

Input
signal

Fig. B4.7:
Block diagram of an

input module
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The screening  of the signal emitted by the sensor is critical in industrial
automation. In industry, electrical lines are generally loaded heavily due
to inductive interference voltages, which leads to a multitude of inter-
ference impulses on every signal line. Signal lines can be screened
either via shielding, discrete cable ducts etc, or alternatively the input
module of the PLC assumes the screening via an input signal delay.

This therefore requires the input signal to be applied for a sufficiently
long period, before it is even recognised as an input signal. Since, due
to their inductive nature, interference impulses are primarily transient
signals, a relatively short input signal delay of a few milliseconds is
sufficient to filter out most of the interference impulses.

Input signal delay is effected mainly via the hardware, i.e. via connec-
tion of the input to an RC module. In isolated cases, however, it is also
possible to produce an adjustable signal delay via the software.

The duration of an input signal delay is approximately 1 to 20 milli-
seconds – depending on manufacturer and type. Most manufacturers
offer especially fast inputs for tasks, where the input signal delay is then
too long to recognise the required signal.

Differentiation is made between positive and negative switching connec-
tions when connecting sensors to PLC inputs. In other words, differen-
tiation is made between inputs representing a current sink or a current
source. In Germany for instance, in compliance with VDI 2880, positive
switching connections are mainly used, since this permits the use of
protective grounding. Positive switching means that the PLC input rep-
resents a current sink. The sensor supplies the operating voltage or
control voltage to the input in the form of a 1-signal.

If protective grounding is employed, the output voltage of the sensor is
short-circuited towards 0 volts or the fuse switched off in the event of a
short-circuit in the signal line. This means that a logic 0 is applied at the
input of the PLC.
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In a number of countries, the use of negative switching sensors is com-
monplace, i.e. the PLC inputs operate as a power source. In these
cases, a different protective measure must be used to prevent a 1-sig-
nal from being applied to the input of the PLC in the event of a short-
circuit on the signal line. Possible methods are the earthing of the posi-
tive control voltage or insulation monitoring, i.e. protective grounding as
a protective measure.

Output modules conduct the signals of the central control unit to final
control elements, which are actuated according to the task. In the main,
the function of an output – as seen from the application of the PLC –
therefore includes the following:

4.6 Output
module

Voltage adjustment of logic voltage to control voltage
Protection of sensitive electronics from spurious voltages from the
controller
Power amplification sufficient for the actuation of major final control
elements
Short-circuit and overload protection of output modules

In the case of output modules, two fundamentally different methods are
available to achieve the above: Either the use of a relay or power elec-
tronics.

The optocoupler once again forms the basis for power electronics and
ensures the protection of the electronics and possibly also the voltage
adjustment. 

A protective circuit consisting of diodes must protect the integral power
transistor from voltage surges.

Signal from
the 

control unit

Output
signal

Short-circuit
monitoringAmplifier

Optocoupler

Fig. B4.8:
Block diagram of an

output module

B-44              
Chapter 4

TP301 ••  Festo Didactic



Nowadays short-circuit protection , overload protection  and power
amplification  are often ensured with fully integral modules. Standard
short-circuit protection measures the current flow via a power resistor
so as to switch off in the event of short-circuit; a temperature sensors
provides overload protection; a Darlington stage or alternative power
transistor stages provide the necessary power.

The permissible power of an output module is usually specified in a
way which permits differentiation to be made between the permissible
power of an output and the permissible cumulative power of an output
module. The cumulative power of a module is almost always consider-
ably lower than the total of individual permissible ratings, since power
transistors transmit heat to one another. 

If relays are used for the outputs, then the relay can assume practically
all the functions of an output module: The relay contact and relay coil
are electrically isolated from one another; the relay represents an excel-
lent power amplifier and is particularly overload-proof, only short-circuit
protection must be ensured via an additional fuse. In practice, however,
optocouplers are nevertheless connected in series with relays, since
this renders the actuation of relays easier and simpler relays can be
used. 

Relay outputs have the advantage that they can be used for different
output voltages. By contrast, electronic outputs have considerably
higher switching speeds and a longer service life than relays. In most
cases, the power of the very small relays used in PLCs corresponds to
that of the power stages of electronic outputs.

In Germany for example, outputs are also connected positive switching
in accordance with VDI 2880, i.e. the output represents a power source
and supplies the operating voltage to the consuming device. 

In the case of a short circuit of the output signal line to earth, the output
is short-circuited, if normal protective grounding measures are used.
The electronics switch to short circuit protection or the fuse switches off,
i.e. the consuming device cannot draw any current and is therefore un-
connected and rendered safe. (In accordance with DIN 0113, the de-
energised status must always be the safe status.) 
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If negative switching outputs are used, i.e. the output represents a cur-
rent sink, the protective measure must be adapted in such a way, that
the consuming device is rendered safe in the event of a short circuit on
the signal line. Again, protective grounding with isolation monitoring or
the neutralising of the positive control voltage are standard practice in
this case.

Each PLC has a programming and diagnostic tool in support of the
PLC application.

 4.7 Programming
device / Per-
sonal computer

Programming
Testing
Commissioning
Fault finding
Program documentation
Program storage

These programming and diagnostic tools are either vendor specific pro-
gramming devices or personal computers with corresponding software.
Nowadays, the latter is almost exclusively the preferred variant, since
the enormous capacity of modern PCs, combined with their compara-
tively low initial cost and high flexibility, represent crucial advantages.

Also available and being developed are so-called hand-held pro-
grammers for mini control systems and for maintenance purposes. With
the increasing use of LapTop personal computers, i.e. portable, battery
operated PCs, the importance of hand-held programmers is steadily de-
creasing.
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Essential software system functions forming part of the 
programming and diagnostic tool 
Any programming software conforming to IEC 1131-1 should provide
the user with a series of functions. Hence the programming software
comprises software modules for:

Program input
Creating and modifying programs in one of the programming langua-
ges via a PLC.

Syntax test
Checking the input program and the input data for syntax accuracy,
thus minimizing the input of faulty programs.

Translator
Translating the input program into a program which can be read and
processed by the PC, i.e. the generation of the machine code of the
corresponding PC.

Connection between PLC and PC
This data circuit effects the loading of a program to the PLC and the
execution of test functions.

Test functions
Supporting the user during writing and fault elimination and checking
the user program via

a status check of inputs and outputs, timers, counters etc.
testing of program sequences by means of single-step operations,
STOP commands etc.
simulation by means of manual setting of inputs/outputs, setting
constants etc.

Status display of control systems
Output of information regarding machine, process and status of the
PLC system

Status display of input and output signals
Display/recording of status changes in external signals and inter-
nal data
Monitoring of execution times
Real-time format of program execution
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Documentation
Drawing up a description of the PLC system and the user program.
This consists of

Description of the hardware configuration
Printout of the user program with corresponding data and identi-
fiers for signals and comments
Cross-reference list for all processed data such as inputs, outputs,
timers etc.
Description of modifications

Archiving of user program
Protection of the user program in non volatile memories such as
EPROM etc.
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Chapter 5

Programming of a PLC
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Control programs represent an important component of an automation
system.

5.1 Systematic
solution finding

Control programs must be systematically designed, well structured and
fully documented in order to be as

error-free
low-maintenance
cost effective

as possible

Phase model of PLC software generation
The procedure for the development of a software program illustrated in
fig. B5.1 has been tried and tested. The division into defined sections
leads to targeted, systematic operation and provides clearly set out re-
sults, which can be checked against the task.

The phase model consisting of the following sections

Specification: Description of the task
Design: Description of the solution
Realisation: Implementation of the solution
Integration/commissioning: Incorporating into environment and
testing the solution

can be applied to basically all technical projects. Differences occur in
the methods and tools used in the individual phases.

Specification – Verbal description of control task
– Technology, positional sketch
– Macrostructure of control program

1.

Design – Function chart to IEC 848
– Function diagrams such as
   displacement-step-diagram
– Function table
– Definition of software modules
– Part list and circuit diagram

2.

Realisation – Programming in LD, FBD, IL,
   ST and SFC
– Simulation of subprograms and
   overall program

3.

– Design of system
– Testing of subprograms
– Testing of overall program

4. Commissioning

Fig. B5.1:
Phase model for the

generation of PLC software
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The phase model can be applied to control programs of varying com-
plexity; for complex control tasks the use of such a model is absolutely
essential.

The individual phases of the model are described below.

Phase 1: Specification (Problem formulation)
In this phase, a precise and detailed description of the control task is
formulated. The specific description of the control system function, for-
malised as much as possible, reveals any conflicting requirements, mis-
leading or incomplete specifications.

The following are available at the end of this phase:

Verbal description of the control task
Structure/layout
Macrostructuring of the system or process and
thus rough stucturing of the solution

Phase 2: Design (Concrete form of solution concept)
A solution concept is developed on the basis of the definitions estab-
lished in phase 1. The method used to describe the solution must pro-
vide both a graphic and process oriented description of the function and
behaviour of the control system and be independent of the technical
realisation.

These requirements are fulfilled by the function chart (FCH) as defined
in DIN 40 719, Part 6 or IEC 848. Starting with a representation of the
overall view of the controller (rough structure of the solution), the solu-
tion can be refined step by step until a level of description is obtained,
which contains all the details of the solution (refinement of rough struc-
ture).

In the case of complex control tasks, the solution is structured into indi-
vidual software modules in parallel with this. These software modules
implement the job steps of the control system. These can be special
functions such as the realisation of an interface for visualisation or com-
munications systems, or equally permanently recurring job steps.

The displacement-step diagram represents another standard form for
the description of control systems apart from the function chart to DIN
40 719, Part 6.
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Phase 3: Realisation (Programming of solution concept)
The translation of the solution concept into a control program is effected
via the programming languages defined in IEC 1131-3. These are: se-
quential function chart, function block diagram, ladder diagram, state-
ment list and structured text.

Control systems operating in a time/logic process and available in FCH
to DIN 40 719, P.6, can be clearly and easily programmed in a sequen-
tial function chart. A sequential function chart, in as far as possible,
uses the same components for programming as those used for the de-
scription in the function chart to DIN 40 719, T.6.

Ladder diagram, function block diagram and statement list are the pro-
gramming languages suitable for the formulation of basic operations
and for control systems which can be described by simple operations
logic operations or boolean signals. 

The high-level language structured text is mainly used to create soft-
ware modules of mathematical content, such as modules for the de-
scription of control algorithms.

In so far as PLC programming systems support this, the control pro-
grams or parts of a program created should be simulated prior to com-
missioning. This permits the detection and elemination of errors right at
the initial stage.

Phase 4: Commissioning
(Construction and testing of the control task)
This phase tests the interaction of the automation system and the con-
nected plant. In the case of complex tasks, it is advisable to com-
mission the system systematically, step by step. Faults, both in the sys-
tem and in the control program, can be easily found and eliminated
using this method.
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Documentation
One important and crucial component of a system is documentation,
which is an essential requirement for the maintenance and expansion of
a system. Documentation, including the control programs, should be
available both on paper and on a data storage medium. The documen-
tation consists of the document of the individual phases, printouts of the
control programs and of any possible additional descriptions concerning
the control program. Individually these are:

Problem description
Positional sketch or technology pattern
Circuit diagram
Terminal diagram
Printouts of control programs in SFC, FBD etc.
Allocation list of inputs and outputs 
(this also forms part of the control program printouts)
Additional documentation

IEC 1131-3 is a standard for the programming of not just one individual
PLC, but primarily also of complex automation systems. Control pro-
grams for extensive applications must be clearly structured in order to
be intelligible, maintainable and possibly also portable, i.e. transferable
to another PLC system.

5.2 IEC 1131-3 struc-
turing resources

Definitions are required not only for elementary language commands,
but also for the language elements for structuring. Structuring resources
(fig. B5.2) relate to the control programs and the configuration of the
automation system.

– Configuration of
   automation system

CONFIGURATION
RESOURCE
TASK
VAR_GLOBAL
ACCESS_PATH

Structuring
of
configuration
level

– Sequence 
   representation
– Refinement

Sequential function chart

– Modularisation
PROGRAM
FUNCTION_BLOCK
FUNCTION
DATATYPES

Structuring
of
program level

Fig. B5.2:
IEC 1131-3
structuring method
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Structuring resources at program level
The structuring resources – program, function block and function – con-
tain the actual control logic (rules) of the control program. These are
also known as program organisation units. These structuring resources
are available for any programming language. They are used for the
modularisation of control programs and the user program – this con-
cerns primarily programs and function blocks – or also supplied by the
manufacturer – as far as programs, function blocks are concerned.

IEC 1131-3 defines a comprehensive set of standardised functions and
function block. These can be expanded by own user functions and
function block for special or continually recurring tasks.

Software modules, which can be used in any way, are entered in
libraries, where they are made available.

Programs represent the outer program organisation shell and can be
differentiated from the function block mainly by the fact that they cannot
be invoked by any other program organisation unit.

The sequential function chart represents another resource for structur-
ing at program level. The contents of the actual programs and function
block can again be clearly and intelligibly represented by means of a
sequential function chart.

Structuring resources at configuration level
The language elements for configuration describe the incorporation of
control programs in the automation system and their time-related con-
trol.

The automation system represents a configuration (CONFIGURATION
language element). Within the configuration, there are global variables
(VAR_GLOBAL language element).
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A resource (RESOURCE language element) corresponds to the proces-
sor of a multiprocessor system, to which one or several programs are
assigned. In addition, it comprises control elements, which include the
time-related control of programs. This control element is a task (TASK
language element). The control element Task defines whether a pro-
gram is to be processed cyclically or once only, triggered by a specific
event. Programs not specifically linked to a task are processed cycli-
cally in the background and with the lowest priority.

The structuring resources for configuration are shown in a combined
overview in fig. B5.3. An example applying these to an automation task
is given by way of an explanation.

The task in hand is to design and automate a production line for the
assembly of pneumatic valves.

A PLC multiprocessor with three processor cards has been designated
for the valve assembly. The processor cards are assigned to the valve
assembly, the conveyor control and quality control.

Valve production configuration

Task_1 Task_2

Assembly
program

Initial position_
run program

Conveyor
program

Conveyor_idle
run program

Conveyor control
resource

Task_
cylical

Packaging
program

Quality control
resource

Task_
unique

Statistics
program

Data_save
program

Global and directly represented variables

Valve assembly
resource

Fig. B5.3:
Graphic example
of a configuration
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The programs Statistics and Data_saving are associated with different
tasks. As such they possess different execution characteristics. The
program Statistics evaluates and compresses the quality data at regular
intervals. The priority of this program is low. It is started regularly, e.g.
every 20 minutes, by the task Task_cyclical. In the event of an EMER-
GENCY-STOP, the program Data_saving is to transmit all available
data to a higher-order cell computer in order to prevent any potential
data loss. The program is started event-driven of the highest priority via
the EMERGENCY-STOP signal.

IEC 1131-3 provides defined and thus standardised interfaces for the
exchange of data within a configuration. If specific information such as
a read variable, is required in different program organisation units, this
variable is designated as a global variable. Data can then be ex-
changed via a variable designated as such. Global variables can only
be accessed in programs and function blocks.

What is of interest for networked systems is communication beyond a
configuration. Special standard communication function blocks are
available to the user for this. These are defined in IEC 1131-5 and are
used in IEC 1131-3. Another possibility is the definition of access paths
(language resource ACCESS_PATH) to specific variables. These can
then also be read or written from other positions.

IEC 1131-3 defines five programming languages. Although the function-
ality and structure of these languages is very different, these are
treated as one language family by IEC 1131-3 with overlapping struc-
ture elements (variable declaration, organisation parts such as function
and function block, etc.) and configuration elements.

5.3 Programming
languages 

The languages can be mixed in any way within a PLC project. The
unification and standardisation of these five languages represent a
compromise of historical, regional and branch-specific requirements.
Provision has been made for future expansion, (such as the function
block principle or the language Structured Text) plus necessary infor-
mation technology details (data type etc.) have been incorporated.
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The language elements are explained with the help of a machining pro-
cess involved in valve production. Two sensors are used to establish
whether a workpiece with correctly drilled holes is available at the ma-
chining position. If the valve to be machined is of type A or type B
– this is set via two selector switches – the cylinder advances and
presses the sleeve into the drilled hole.

Ladder diagram (LD)
Ladder diagram is a graphic programming language derived from the
circuit diagram of directly wired relay controls. The ladder diagram con-
tains contact rails to the left and the right of the diagram; these contact
rails are connected to switching elements (normally open/normally
closed contacts) via current paths and coil elements.

Function block diagram (FBD)
In the function block diagram, the functions and function blocks are rep-
resented graphically and interconnected into networks. The function
block diagram originates from the logic diagram for the design of elec-
tronic circuits.

Part_typeA Part_present Drill_ok Sleeve_in

Part_TypeB

Fig. B5.4:
Example of ladder 
diagram language

OR

Part_TypB

AND Sleeve_in

Part_present

Drill_ok

Part_TypA

Fig. B5.5:
Example of function block
diagram language
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Instruction list (IL)
Statement list is a textual assembler-type language characterised by a
simple machine model (processor with only one register). Instruction list
is formulated from control instructions consisting of an operator and an
operand.

With regard to language philosophy, the ladder diagram, the function
block diagram and instruction list have been defined in the way they are
used in today’s PLC technology. They are however limited to basic
functions as far as their elements are concerned. This separates them
essentially from the company dialects used today. The competitiveness
of these languages is maintained due to the use of functions and func-
tion blocks.

Structured text (ST)
Structured text is high-level language based on Pascal, which consists
of expressions and instructions. Instructions can be defined in the main
as: Selection instructions such as IF...THEN...ELSE etc., repetition in-
structions such as FOR, WHILE etc. and function block invocations. 

Structured text enables the formulation of numerous applications, be-
yond pure function technology, such as algorithmic problems (high-
order control algorithms etc.) and data handling (data analysis, process-
ing of complex data structures etc.).

LD Part_TypeA
OR Part_TypeB
AND Part_present
AND Drill_ok
ST Sleeve_in

Fig. B5.6:
Example of instruction

list language

Sleeve_in := (Part_TypeA OR Part_TypeB) AND Part_present AND Drill_ok;Fig. B5.7:
Example of structured

text language
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Sequential function chart (SFC)
The sequential function chart is a language resource for the structuring
of sequence-oriented control programs.

The elements of the sequential function chart are steps, transitions, al-
ternative and parallel branching.

Each step represents a processing status of a control program, which is
active or inactive. A step consists of actions which, identical to the tran-
sitions, are formulated in the IEC 1131-3 languages. Actions them-
selves can again contain sequence structures. This  feature permits the
hierarchical structure of a control program. The sequential function
chart is therefore an excellent tool for the design and structuring of
control programs.
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Chapter 6

Common elements of
programming languages
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According to IEC 1131-3, only inputs and outputs and the controller
memory can be addressed directly by a control program. Direct ad-
dressing in this instance means that in the program an input, output or
memory element of the controller is affected immediately and not indi-
rectly via a defined symbolic variable. Naturally, IEC 1131-3 recognises
numerous other resources, e.g. timers and counters. However, these
are integrated into functions and function blocks in order to ensure the
highest possible degree of control program portability between different
control systems. 

6.1 Resources
of a PLC

Inputs, outputs and the memory
The most important controller constituents include the inputs, outputs
and the memory. Only via its inputs can a controller receive information
from the connected processes. Similarly it can only influence these via
its outputs or store information for subsequent continued processing.

The designations for the resources inputs, outputs and memory
elements are defined by IEC 1131-3 and mandatory.

Without further reference, these designate only binary inputs or outputs
and single bit memory elements, designated as a flag. 

The standard generally speaks of directly represented variables. These
are variables, which are referred directly to the hardware-related avail-
able inputs, outputs and memory elements of the controller. The alloca-
tion of inputs, outputs and flags and their physical or logical position in
the control system is defined by the respective controller manufacturer.

Inputs I

Outputs Q

Memory M

Fig. B6.1:
Designations for

inputs, outputs
and memory
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Insofar as the controller supports this, resources can be addressed,
which are defined in excess of one bit. IEC 1131-3 employs a further
letter to describe this, which follows the abbreviation I, Q or M and, for
instance, designates bytes and words.

IEC 1131-3 designates the data types shown in fig. B6.2 in conjunction
with inputs, outputs and flags.

1-Bit sizes, such as defined by the data type BOOL (boolean), may only
assume the values 0 or 1. Consequently, the range of values for BOOL
type data consists of the two values 0 and 1.

In contrast with this, one should observe that in the case of bit se-
quence data types consisting of more than one bit, there is no immedi-
ate connected range of values. All bit sequence data types such as for
instance BYTE and WORD are merely a combination of several bits.
Each of these bits has the value 0 or 1, but their combination does not
have its own value.

The mandatory designation methods for inputs, outputs and flags of
different bit length are represented in fig. B6.3. 

BOOL Bit sequence of length 1

BYTE Bit sequence of length 8

WORD Bit sequence of length 16
Fig. B6.2:
Data types

I, Q, M
or
IX, QX, MX

Input bit, output bit, memory bit  1 bit

IB, QB, MB Input byte, output byte, memory byte  8 bit

IW, QW, MW Input word, output word, memory word 16 bit
Fig. B6.3:
Designations for inputs,
outputs and memory
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An individual bit of an input, output or flag may also be addressed with-
out the additional abbreviation X for the data type.

Since a controller always has a relatively large number of inputs, out-
puts and flags available, these must be specially identified for the pur-
pose of differentiation. Numbering is used in IEC 1131-3 to this end,
such as in the following example:

IEC 1131-3 does not specify the number range, which is permissible for
this numbering and whether it should start with 0 or 1. This is specified
by the controller manufacturer.

A hierarcical number of inputs, outputs and flags may also be used, if
the controller in use has been suitably configured.

A point is used to separate the indiviudal levels of the hierarchy. The
number of hierarchy levels has not been defined.

In the case of hierarchical numbering, the highest position in the num-
ber on the left must be coded, the numbers further to the right repre-
sent consecutive lower positions.

I3.8.5Example

I1 Input 1

IX9 Input 9

I15 Input 15

QW3 Output word 3

MB5 Memory byte 5

MX2 Memory 2
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The specified input I3.8.5 can therefore be be made up as follows:

IEC 1131-4 does not make any comment regarding the assignment of
individual bits in a BYTE or WORD. Controller manufacturers frequently
choose hierarchical designation methods to assign individual bits as
parts of words. As such, F6.2 could for instance represent the bit num-
ber 2 of flag word number 6. However, this does not necessarily have
to be so, since flag bit F6.2 and flag word FW6 need not be in any way
connected. Moreover, no definition has been made as to whether the
numbering of individual bits in one word is to start on the left or the
right (bit number 0 on the far right has been the most frequently used
so far). 

Directly addressed variables
If resources in a control program are to be addressed directly, the re-
source designation must be prefixed with the sign %.

Examples of directly addressable variables:

The use of directly addressed variables is permissible solely in pro-
grams, configurations and resources.

The program organisation units Function and Function block must oper-
ate exclusively with symbolic variables in order to keep these as con-
troller-independent as possible and as such more widely usable.

   Input

in insert No. 3

on plug-in card No. 8

as input No. 5

I 3. 8. 5
Fig. B6.4:
Structure of 
hierarchical designations

%IX12
or
%I12

Input bit 12

%IW5 Input word 5

%QB8 Output byte 8

%MW27 Memory word 27
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The use of exclusively directly represented variables (resources, inputs,
outputs and memory) is not enough to create control programs. Fre-
quently, data is required, which contains specific information, also of a
more complex nature. This data can be specified direct, e.g. time data
or counter values or accessible via variables only – i.e. via a symbolic
designation. The most important definitions for dealing with data or vari-
ables is shown below.

6.2 Variables and
data types

Symbolic addressing
A symbolic identifier always consists of capital or lower case letters,
digits and an underline. An identifier must always begin with a letter or
an underline. The underline can also be used to render an identifier
more readable. It is however a significant character. The two identifiers
Motor_on and Motoron are therefore different. Several underlines are
impermissible. If the controller supports capital and lower case letters,
then the use of these letters must not be of any significance. The two
identifiers MOTORON and Motoron are interpreted identically and des-
ignate the same object.

The following identifiers are impermissible:

Furthermore, symbolic identifiers must not be identical with key words.
As a rule, key words are words reserved for specific tasks.

Representation of data
Within a control program, it must be possible for time values, counter
values etc. to be specified.

Accordingly, IEC 1131-3 has laid down the definitions for the repre-
sentation of data to specify

Counter values
Time values
Strings

123 Name does not start with a letter

Button_? The last character is invalid, since it is
neither a letter or a number
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IEC 1131-3 provides for different types of time data:

Duration, e. g. for measuring results
Date
Time of day, e. g. for synchronisation from start or end of an event
(also in conjunction with date)

The specification of a time duration consists of an introductory part, the
key word T# or t#, and a sequence of time-related sections – i.e. days,
hours, minutes, seconds and milliseconds.

Description Examples

Integers 12, -8, 123_456*, +75

Floating point numbers -12.0, -8.0, 0.123_4*

Numbers to base 2
(Binary numbers)

2#1111_1111
2#1101_0011

(255 decimal)
(211 decimal)

Numbers to base 8
(Octal numbers)

8#377
8#323

(255 decimal)
(211 decimal)

Numbers to base 16
(Hexadecimal numbers)

16#FF or 16#ff
16#D3 or 16#d3

(255 decimal)
(211 decimal)

Boolean zero and one 0, 1

* The use of individual underlines between the digits is permissible to
improve readability. However, the underline is not significant.

Table B6.1:
Representation of
numerical data

Description Examples

Time duration T#18ms, t#3m4s, t#3.5s
t#6h_20m_8s
TIME#18ms

Date D#1994-07-21
DATE#1994-07-21

Time of day TOD#13:18:42.55
TIME_OF_DAY#13:18:42.55

Date and time DT#1994-07-21-13:18:42.55
DATE_AND_TIME#1994-07-21-13:18:42.55 Table B6.2:

Representation of time data
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Abbreviations for time data:

Capitals may also be used instead of lower case letters and individual
underlines inserted for the purpose of better readability.

A fixed format has also been specified by IEC 1131-3 for the specifica-
tion of a date, time of day or a combination of both. Each specification
starts with a key word; the actual information is represented as shown
in table B6.2.

Another important method of representation of data is the use of a se-
quence of characters also known as strings, which may be required for
the exchange of information, e.g. between different controllers, with
other components of an automation system or also for the programming
of texts for display on control and display units.

A string consists of zero or several characters, introduced and ended
by a simple inverted comma.

Example Description

’B’ String of length 1, containing the character B

’Warning’ String of length 7, containing the string Warning

’’ void string
Table B6.3:

Representation of strings

d Days 

h Hours

m Minutes

s Seconds

ms Milliseconds
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Data types
IEC 1131-3 defines a large number of data types for different tasks.
One such data type, BOOL, has already been mentioned. A BOOL type
variable either assumes the value 0 or 1.

Two other important data types, named INT and UINT define integer
numbers. Variables of data type INT (integer) permit numeric values of
-32 768 to +32 767. The range of values of data type INT therefore
covers both negative and positive numbers. Type UINT variables (un-
signed integer) permit positive values only. The range of values for
UINT extends from 0 to 65 535. SINT (short integer) and DINT (double
integer) are additional data types defining integer numbers. However,
these have an even smaller or greater range of values than data type
INT. The data type REAL contains floating point numbers. These are
numbers, which can contain places after the point, such as for instance
3.24 or -1.5. Data type TIME is used to specify time, and may contain a
time duration such as for instance 2 minutes and 30 seconds. 

Keyword Data type Range of values

BOOL Boolean number 0, 1

SINT Short integer 0 to 255

INT Integer -32 768 to +32 767

DINT Double integer -2 147 483 648 to +2 147 483 647

UINT Unsigned integer 0 to 65 535

REAL Floating point number +/-2.9E-39 to +/-3.4E+38

TIME Time duration implementation-dependent

STRING Variable-long string implementation-dependent

BYTE Bit sequence 8 no range of values declarable

WORD Bit sequence 16 no range of values declarable
Table B6.4:
A number of elementary
data types
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Apart from these elementary predefined data types, the user has the
possibility of defining own data types. This is useful in cases where the
problem definition goes beyond the realms of pure control technology.

Derived data types are declared within a TYPE...END_TYPE construct.
The complete declaration is listed below for enumeration type Colour in
table B6.5.: 

The significance of the individual data types in table B6.5 is explained
briefly below:

A data element of the type Colour may only assume one of the
values RED, BLUE, YELLOW or BLACK.
A data element of the data type Reference_range may only assume
values between 80 and 110, including the lower and upper limit 80
or 110.
A Position type data element represents a list with 10 entries. Each
entry has the value of a REAL number. Individual entries can be
indexed via the index.
A Coordinates type data element contains two REAL numbers, which
can be accessed via their names X and Y.

Not every controller needs to recognise all these data types. Each con-
troller manufacturer puts together a set of data types, which may be
used in the controller.

Derived data type Declaration
TYPE ……  END_TYPE

Enumeration type Colour: (RED, BLUE, YELLOW, BLACK);

Subrange type Reference_range: INT(80..110);

Fields (array) Position: ARRAY[1..10] OF REAL;

Structures Coordinates:
STRUCT

X:REAL;
Y:REAL;

END_STRUCT;
Table B6.5:

Derived data types

TYPE
Colour: (RED, BLUE, YELLOW, BLACK);

END_TYPE

B-70              
Chapter 6

TP301 ••  Festo Didactic



Variable declaration
With the use of data, the right of access to this data must be clearly
defined. To this end, IEC 1131-3 uses a variable declaration.

In order to understand the function of a variable declaration, it is first of
all necessary to establish that the controller program is constructed into
individual organisation units.

These units are:

Configuration
Resource
Programs
Function blocks
Functions

All variables have a specific position. In the case of programming lan-
guages in text form (IL and ST), variable declarations are roughly the
same as those used in the programming language Pascal. For graphic
forms of representation, a tabular form with equivalent contents would
be feasible. These are however not specified in IEC 1131-3.

All variable declarations (fig. B6.5) always start with a keyword, which
designates the position of the variable in the organisation unit of the
controller, and end with the keyword END_VAR.

The variables and their assignment to a data type are entered between
these keywords in that the symbolic identifier or identifiers of the vari-
ables are specified, the data type named after a colon and the declara-
tion closed with a semicolon. If several variables are declared, they are
repeated correspondingly. Normally, each declaration is written in a
separate line in this case.

VAR
Temp : INT; (*Temperature *)
Manual : BOOL; (*Flag for manual operation *)
Full, Open: BOOL; (*Flag for "full" and "open" *)

END_VAR Fig. B6.5:
Variable declaration
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IEC 1131-3 differentiates between six different types of access to vari-
ables. Each type has a keyword, which introduces the variable declara-
tion.

Input variables are declared with the keywords VAR_INPUT and
END_VAR.

Variables specified in this way represent input variables fed externally
to an organisation unit, e.g. a function block. These can be read only
within the organisation unit.

Modifications are not possible.

Analogous to this, output variables are defined with the keywords
VAR_OUTPUT and END_VAR.

The data, which computes an organisation unit and feeds this back
externally is declared as above.

All organisation unit results are to be transferred beyond the organisa-
tion units via variables declared in this way. Within the organisation
units, these can be read and written. Externally, read access only is
permitted.

Input variables VAR_INPUT

Output variables VAR_OUTPUT

Input/output variables VAR_IN_OUT

Local variables VAR

Global variables VAR_GLOBAL

External variables VAR_EXTERN

Table B6.6:
Keywords for the

declaration of variables

VAR_OUTPUT
Result : INT; (*Feedback value *)

END_VAR
Fig. B6.7:

Declaration of an
output variable

VAR_INPUT
Input : INT; (*Input value *)

END_VAR

Fig. B6.6:
Declaration of an

input variable
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In cases where variables containing input and output values are per-
mitted, these must be created with the keywords VAR_IN_OUT and
END_VAR.

This form represents a third option and permits the declaration of vari-
ables, which may be read and used within the organisation unit.

In the case of a variable declared as VAR_IN_OUT, it is assumed that
values will be supplied both to and from the organisation unit. 

Often, variables are required for intermediate results, which are to re-
main unknown externally. Locally named variables such as these are
initiated with VAR and closed with END_VAR.

The variables specified here are local to an organisation unit and can
only be used within this. They are unknown in all other organisation
units and therefore inaccessible.

One typical application are memory locations for intermediate results,
which are not of any interest in other areas of the program. In the case
of these variables, it should be noted that they may also exist several
times in different organisation units. In this way, it is for instance
possible for several function blocks to declare the local variable Z.
These local variables are totally unrelated and differ from one another. 

A variable may also be globally declared, in which case it may be ac-
cessed universally. The necessary declaration is carried out in a similar
way, whereby the keywords VAR_GLOBAL and VAR_EXTERNAL are
used.

VAR_IN_OUT
Value : INT;

END_VAR
Fig. B6.8:
Declaration of an 
input/output variable

VAR
Z : INT; (*Intermediate result *)

END_VAR
Fig. B6.9:
Declaration of a 
local variable
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This is how all global data for a control program is declared. Global
data is universally accessible. This declaration can only be found in the
organisation units configuration and resource. 

In order to facilitate access of global data to an organisation unit, this
declaration is to be recorded in the organisation unit.

Without the declaration shown above, access to global data would not
be permissible.

This very strict declaration unit for all variables uniquely defines which
variables are recognised by an organisation unit and how it may be
used. A function block may for instance read but not change its input
variables, and a program using a function block may read only but not
change its output variables.

The keyword AT is used to assign variables to the inputs and outputs of
the controller.

Declarations in this form are the best means for defining the signific-
ance of all inputs and outputs of the controller. If a change occurs in
the system and its connection to the controller, only these declarations
need be changed. Any usage of the Stop_button, or the temperature
within an existing program, remain unaffected by this.

VAR_GLOBAL
Global_value: INT;

END_VAR
Fig. B6.10:

Declaration of a
global variable

VAR_EXTERNAL
Global_value: INT;

END_VAR
Fig. B6.11:

Declaration of access
of a global variable

VAR
Stop_button AT %I2.3: BOOL;
Temperature AT %IW3: INT;

END_VAR

Fig. B6.12:
Declaration of variables

with assignment to
inputs of a controller
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According to IEC 1131-3 it is however nevertheless possible to use
directly addressed variables without being assigned to a symbolic ident-
ifier. The declaration in that case is as follows:

Initialisation
Very often it is essential for a variable to be given an initial value. This
value may change several times during the processing of a program,
even though it is defined at the start.

Initial statuses such as these are also important for other data. Such
initial values are specified jointly with the declaration of the variables. A
global variable of this type named Dozen is to be declared which, at the
start of the program, assumes the value 12.

As shown by this example, the initialisation value is always inserted
between the data type – in this instance INT – and the closing semi-
colon. The specification of the initialisation value always requires the
prefixed symbol :=.

In this way, each variable can be assigned a special initial value. Fun-
damentally, variables always have a defined initial value at the start of
a program. This is facilitated by the characteristic defined in IEC 1131-
3, whereby data types already have a preset value. Each variable is
preallocated the initial value of the corresponding data type – unless
otherwise specified in the program. A list of initial values of a selection
of elementary data types can be seen in table B6.7.

VAR_GLOBAL
Dozen : INT := 12;

END_VAR
Fig. B6.13:
Declaration of a global 
variable with initial value

VAR
AT %I4.2  : BOOL;
AT %MW1  : WORD;

END_VAR 

Data type Initial value

BOOL, SINT, INT, DINT
UINT
BYTE, WORD
REAL
TIME
STRING

0
0
0
0.0
T#0s
’’ (void string)

Table B6.7:
Preset initial values
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The program for a controller is divided into individual organisation units,
which are as follows at the programming level:

6.3 Program

Programs
Function blocks
Functions

These program organisation units are available in all programming lan-
guages.

IEC 1131-3 defines a wide range of standardised functions and function
blocks for typical control tasks. Apart from these specified functions and
function blocks, IEC 1131-3 permits the definition of own functions and
function blocks. Manufacturers or users can thus produce tailor-made
software modules for a particular application.

Functions
Functions are software modules which, when invoked provide exactly
one result (data element). This is why in a text language the invocation
of a function may be used as an operand in one expression.

Functions cannot contain status information. This means that the invo-
cation of a function with the same arguments (input parameters) must
provide the same result. 

The addition of INT values or logic OR functions are examples for func-
tions. 

Functions and their invocation may be represented graphically or in text
form. 

X
Y

Z

F name

Inputs Output
Fig. B6.14:

Graphic representation
of a function
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Graphically, a function is represented in the form of a rectangle. All
input parameters are listed on the lefthand side, the output parameters
are shown on the righthand side. The function name is entered within
the rectangle. Formal input parameters may be specified along the
edges within the rectangle. This is necessary with some function
groups, such as the bit shift functions for instance (fig. B6.15b). For
functions with identical inputs, such as in the case of the ADD function
(fig. B6.15a), no formal parameter names are required.

The boolean inputs or outputs of a function may be negated, i.e. by
specifying a circle directly outside the rectangle (fig. B6.16)

%QW4
%IW9
%IW7

VAR
AT %QW4
AT %IW9
AT %IW7
AT %MW1

: INT;
: INT;
: INT;
: INT;

END_VAR

%IW2

4

SHL
IN

N

ADD a) without formal
    parameter names

b) with formal
    parameter names

%MW1

%MW5

Fig. B6.15:
Use of formal parameters
with functions

%Q5.3 %Q4.1AND
%M1.1

Fig. B6.16:
Representation of 
boolean negations
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If a function is invoked, its inputs and the function output must be con-
nected.

The ADD function illustrated in fig. 6.15a processes INT values, for
which the deployed directly addressed variables such as %QW4 etc.
are declared as variables of data type INT. Equally, the ADD function
could be applied to type SINT or REAL counter values.

Functions such as these, which operate to input parameters of a differ-
ent data type are termed as overloaded, type-independent functions in
IEC 1131-3. Fig. B6.17 illustrates the characteristics of an overloaded
function using the example of an ADD function.

INT INTADD

a)

INT

%IW1 ADD
%IW2

VAR
AT %IW1
AT %IW2
AT %MW3

: INT;
: INT;
: INT;

END_VAR

SINT SINTADD

b)

SINT

%IB4 ADD
%IB5

VAR
AT %IB4
AT %IB5
AT %MB6

: SINT;
: SINT;
: SINT;

END_VAR

ADD

general

ADD function as example for an overloaded function

All data types defining numbers are 
permissible as input and result parameters

Input parameters of type INT

example

Input parameters of type SINT

%MW3

%MB6

general example

Fig. B6.17:
Overloaded, type-

independent function
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If an overloaded function is limited to a particular data type by the con-
troller – i.e. data type INT as shown in fig. B6.18 – this is referred to as
a typed function. Typed functions are recognisable by their function
name. Typing is indicated by the addition of the underline, followed by
the desired type.

Standard functions
The most important standard functions for the realisation of basic con-
trol technology tasks are listed below.

Since a wide variety of standard function are able to operate using
input parameters of different data types, the data types have been com-
bined into groups. Each group is given a generic data type. The most
important generic data types are shown in table B6.8.

INT INT
INT

%IW1 ADD_INT
%IW2

VAR
AT %IW1
AT %IW2
AT %MW3

: INT;
: INT;
: INT;

END_VAR

ADD_INT

general example

%MW3

Fig. B6.18:
A typed function

ANY_NUM all data types for floating point numbers such as REAL and for
integer numbers such as INT, UINT etc., are contained in
ANY_REAL and ANY_INT.

ANY_INT all data types for integers such as INT, UINT etc.

ANY_REAL all data types, defining floating-point numbers such as REAL or
LREAL

ANY_BIT all bit sequence data types such as BOOL, BYTE, WORD etc.
Table B6.8:
Generic data types
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ANY_BIT
* * *

. . .

ANY_BIT

ANY_BIT

ANY_BIT

. . .

* * * = name or symbol

ANY_INT

* * *
ANY_BIT ANY_BIT

* * *

IN
N

= name

Name Symbol Description

AND & AND operation of all inputs

OR >=1 OR operation of all inputs

XOR =2k+1 Exclusive OR operation of all inputs

NOT Negating input

Table B6.9:
Bit-by-bit

boolean functions

Name Description

SHL Shift IN by N bits to the left, fill with zeros to the right

SHR Shift IN by N bits to the right, fill with zeros to the left

ROR Shift IN cyclically by N bits to the right

ROL Shift IN cyclically by N bits to the leftTable B6.10:
Bit shift functions
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. . .
* * *

* * *

. . .

= name or symbol

ANY_BIT or ANY_NUM ANY_BIT or ANY_NUM

ANY_BIT INTBCD_TO_INT

2#0011_0110_1001 369BCD_TO_INT

INT ANY_BITINT_TO_BCD

25 2#0010_0101INT_TO_BCD

Converts variables of type BYTE, WORD etc. into
variables of type INT.
The bit sequence-variable contains data in BCD format.
(binary coded decimal number)

Example:

Converts variables of type INT into variables of type BYTE,
WORD etc.
The bit sequence-variable contains data in BC format.

Example:

b) Graphic representation

Description:

a) Graphic representation

Description:

Table B6.12:
Functions for 
type conversion

Name Symbol Description

GT > Greater (falling sequence)

GE >= Greater or equal (monotonic sequence)

EQ = Equal

LE <= Less or equal (monotonic sequence)

LT < Less (rising sequence)

NE <> Not equal, non expandable Table B6.11:
Comparison functions
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Function blocks
Function blocks are software modules, which supply one or several re-
sult parameters.

One important characteristic is the possibility of instantiation of function
blocks. If a function block in a control program is to be used, a copy or
instance must be created. This is effected via the assignment of an
instance name. Linked to this identifier is a data structure, which stores
the statuses of this function block copy (values of the output par-
ameters and internal variables). The status information of the function
block copy remains intact from one processing to the next.

This can be demonstrated using the example of the standard function
block for counting operations. The current counter value remains from
one counting operation to the next and can thus be interrogated at any
chosen time. This type of behaviour cannot be realised via the lan-
guage resource, as described above.

* * *

. . .

ANY_NUM ANY_NUM

. . .

* * *

ANY_NUM

ANY_NUM

= name or symbol

Name Symbol Description

ADD Add all inputs

MUL * Multiply all inputs

SUB – Subtract second input from first input

DIV / Divide first input by second input

MOVE := Assign input to output, non expandableTable B6.13:
Arithmetic functions
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Graphic representation of function blocks is also available (apart from
representation in one of the text languages). These are represented by
rectangles in the same way as functions (fig. B6.19). The input par-
ameters are entered on the left and the output parameters on the right.
The type of function block is specified within the rectangle. Then formal
parameter names are entered on the left and right edges within the
box. The identifier, under which the module is addressed is above the
function block. 

If a function block is used, then this must be given a identifier. If the
inputs are allocated – i.e. current transfer parameters are available –
then these are used for processing. If the inputs are not connected,
then the stored values of previous invocations are accessed again or
the corresponding initial values are used.

Fig. B6.20 shows the use (invocation) of the standard function block for
a counter.

Y
P
Q

X
FB-Typ

Data typ

Identifier

Data typ
Data typ
Data typ

Inputs Outputs
Fig. B6.19:
Graphic representation of 
a function block copy

PV

Q

CV

CU
CTU

RBOOL

PV

Q

CV

CU
CTU

R
%I 1.3

10

%Q2.5

BOOL

INT

BOOL

INT

Function block – type CTU
(incremental counter)

Use of a copy of the 
CTU function block in a 
control program

Count_Pack

Fig. B6.20:
Use (invocation) of the
CTU function block 
(incremental counter)
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The copy used of the function block CTU bears the identifier
Count_Pack. Each positive switching edge of input %I1.3 increases the
current counter value by 1. When the set preselect value 10 has been
reached, output Q of Count_pack and thus output %Q2.5 assumes a
1-signal; in all other cases a 0-signal is assumed.

It is also possible for several copies to be created of one and the same
function block within a control program, as illustrated fig. B6.21.

TP
%I 1.7 IN

PTT#7s ET
Q

QIN
TP

PTTIME
BOOL BOOL

ET TIME
Q

TP
IN
PTT#3s15ms ET

Q

OR

Display_1

Function block –
type TP (pulse timer)

T_Pressure

Use of several copies of
function block TP

T_Colour

Fig. B6.21:
Use of several copies of a

function block

B-84              
Chapter 6

TP301 ••  Festo Didactic



Standard function blocks
Table B6.14 lists the most important function blocks standardised by
IEC 1131-3.

User-defined functions
Apart from the functions specified, IEC 1131-3 permits the definition of
own functions. 

The following rules apply for graphic declaration:

Declaration of the function within a FUNCTION... END_FUNCTION
construct.
Specification of the function name and the formal parameter names
and data types of input and outputs of the function.
Specification of the names and data types of internal variables used
in the function; a VAR...  END_VAR construct may be employed for
this. No function block copies may be used as internal variables,
since these would necessitate the storing of status information.
Programming of the function body in one of the languages LD, FBD,
IL or ST.

SR Bistable function block (primarily setting)

RS Bistable function block (primarily resetting)

CTU Incremental counter

CTD Decremental counter

TP Pulse

TON Switch-on signal delay

TOF Switch-off signal delay

R_TRIG Edge detection: rising edge

F_TRIG Edge detection: falling edge
Table B6.14:
Standard function blocks
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The sample function SPEC_MUL in fig. B6.22 is given two parameters
of type INT. The two parameter values are multiplied, and the figure 15
added. The value calculated in this way feeds back the function as a
result.

The use of a function could be as demonstrated in fig. B6.23.

INT INT
INT

SPEZ_MUL
F1
F2

*

+ SPEZ_MUL
15

END_FUNCTION

FUNCTION
(* Description of external interface *)

(* Functionbody: *)
(* Programmed in FBD language *)

F1
F2

Fig. B6.22:
Example function

SPEZ_MUL

%MW1

END_VAR

SPEZ_MUL

VAR
AT %MW1
AT %MW2
AT %MW3
AT %IW4
AT %QW5

: INT;
: INT;
: INT;
: INT;
: INT;

F1
F2%MW2

+ %MW3

%IW4
%QW5

Fig. B6.23:
Use of SPEZ_MUL function
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User-defined function blocks
The generation of own function blocks by the user is an important fea-
ture of IEC 1131-3. 

The following rules listed apply for graphic declaration:

Declaration of function blocks within a FUNCTION_BLOCK...
END_FUNCTION_BLOCK construct.
Specification of the function block name and the formal parameter
names and data types of the inputs and outputs of the function
block.
Specification of the names and data types of internal variables; a
VAR... END_VAR construct may be employed.
Programming of the function block body in one of the languages LD,
FBD, IL, ST or SFC .

Extended access of data, such as global variables are not taken into
account here.

BOOL BOOL
TIME

FUNCTION_BLOCK

SR
S1
R

Q1

EP_S

TON
IN
PT ET

Q

TOF
IN
PT ET

Q

END_FUNCTION_BLOCK

E_TIME

Debouncing
S_ON
E_TIME

S_OFF

S_ON

EP_ON

S_OFF

EP_OFF

(* Description of external interface *)

(* Function block body: *)
(* programmed in FBD language *)

Fig. B6.24 :
Declaration of a
function block
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The function block illustrated in fig. B6.24 represents a function block
for the debouncing of signals, consisting of two input parameters, i.e.
one boolean input for the signal and one time input for the adjustment
of debounce time. The output parameter S_OFF supplies the de-
bounced output signal.

Programs
A program consists of any language elements and constructs necess-
ary to achieve the desired machine or process behaviour via the PLC.

Programs are therefore constructed in the main for functions, function
blocks and the elements of the sequential function chart.

Program features are thus largely identical to those of function blocks.
The only thing of interest at this stage are the differences:

The delimiting keywords for program declarations are PRO-
GRAM...END_PROGRAM.
The use of directly addressable variables is permitted within pro-
grams only.

An example of this is illustrated in fig. B6.25.

 VAR
AT
AT
AT

 END_VAR

%IX0.0
%IX0.1
%QX0.0

:  BOOL;
:  BOOL;
:  BOOL;
:  TP;

OR

T#3m

TP
IN
PT

Q
ET

 END_PROGRAM

*)
*)
*)
*)

Switch_F
Switch_A
Lamp
Duration

Switch_A

Switch_F
Duration

Light

 PROGRAM staircase_light

(* Light switch at front door
(* Light switch at appartment door
(* Stairwell light
(* Time illuminated

Fig. B6.25:
Example of a program
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The name of the program is "staircase_light". Three boolean variables
Switch_F, Switch_A and Lamp, allocated to two PLC inputs and one
output, have been declared as internal variables. Added to this is the
declaration of a function block copy of type Pulse Timer (TP).

The program realises the following small task:

The stairwell light is switched on for three minutes, if one of the two
light switches on the apartment door or the front door is activated.
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Chapter 7

Function block diagram
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The function block diagram is a graphic programming language, which
is consistent, as far as possible, with the documentation standard IEC
617, P.12.

7.1 Elements of
the function
block diagram

The elements of the function block diagram are graphically represented
functions and function blocks. These are interconnected by signal flow
lines; directly linked elements form a network.

Fig. B7.1 illustrates two simple examples of the function block diagram.
In fig. B7.1a, the variable Manual_closed and the result Greater-Com-
parison are OR’d. The result is mapped onto the variable Gate_closed.
Fig. B7.1b represents the use of a function block. The signal delay
T_startup is started via the input %I1.3 with the preset time of 7 sec-
onds. The signal delay status, T_startup.Q, is assigned to the output
%Q2.4.

TON
%Q2.4IN

PT

Q

ET

%I 1.3

T#7s

>

60

>=1

a) Logic operation of functions

b) Use of function blocks

T_Startup

Temp

Gate_closedManual_off

Fig. B7.1:
Function block
diagram (FBD)
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The direction of the signal flow in a network is from left to right. If a
program organisation unit consists of several networks, these are pro-
cessed in sequence from top to bottom. 

7.2 Evaluation 
of networks

The processing sequence within a program organisation unit may be
influenced through the use of elements for execution control. This group
of elements includes for instance the conditional and the unconditional
jump. In fig. B7.2 a conditional jump is used to realise a program
branch.

The conditional jump, represented via a double arrow, is executed, if
the jump condition is met. Therefore, if input %I1.1 and flag %M2.5
both carry a 1-signal, then a jump will be executed to network with the
identifier Variant_1 and processing continued at this point.

If a jump is to be executed to a network, the corresponding network
must be prefixed with a symbolic name, the jump flag, ending with a
colon. The jump flag must be identified in accordance with the rules for
symbolic names.

&

>=1

%I 2.5
%Q1.0

%I 1.1 Variant_1

Variant_1:

%M2.5

%M2.1

Fig. B7.2:
Use of a jump in FBD
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When programming in the FBD language, it should be noted that no
loop structures are permissible within networks. Structures of this type
may be realised solely through the additional use of a feedback path.
Fig. B7.3b illustrates an example of this.

7.3 Loop
structures

By means of the utilisation of a feedback path, the third input of the
OR-function assumes a defined value during its processing.

>=1

%I 2

&

>=1

%I 2

&

%I 1

%I 1

b) authorised loop structure

a) unauthorised loop structure

%M4

%M4 %M2.0

Fig. B7.3:
FBD with loop structures
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Chapter 8

Ladder diagram
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The ladder diagram language, like the function block diagram, repre-
sents a graphic programming language. The elements available in a
ladder diagram are contacts and coils in different forms. These are laid
out in rungs within the confines of power rails on the left and on the
right.

8.1 Elements of the
ladder diagram

Fig. B8.1 illustrates the basic structure of a current rung. In this
example, the status of the flag %M1.5 is directly assigned to %Q3.5.
Table B8.1 contains a list of the most important elements of a ladder
diagram.

%M1.5 %Q3.5

Fig. B8.1:
Basic structure of a rung

/

P

N

/

S

R

P

N

Contacts

Normally open contact

Normally closed contact

Edge contact, positive edge

Edge contact, negative edge

Coils

Coil

Negating coil

Setting coil

Resetting coil

Edge coil, positive edge

Edge coil, negative edgeTable B8.1:
Elements of the
ladder diagram
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A normally open contact supplies the value 1, when the corresponding
push button switch is closed. A normally closed contact reacts corre-
spondingly with the value 1, when the switch or push button is opened.

Two edge contacts supply the value 1 for the transition from 0 to 1
(positive edge) or from 1 to 0 (negative edge).

With a normal coil, the result (resulting logic operation of the contacts)
is copied to the specified variable; in the case of a negating coil, the
negation of the result is transferred.

The setting coil assumes the value 1, if the result is 1, and remains
unchanged even if the result is 0 in between. Similarly the resetting coil
only assumes the value 0, if the result is 1. The 0 status of the coil is
maintained.

The two edge coils are set, if the result changes from 0 to 1 (positive
edge) or from 1 to 0 (negative edge).

The basic functions AND and OR may be realised by means of a
corresponding configuration of contacts in the current rung.

The AND function is represented by means of the serial connection of
the two contacts (fig. B8.2a). Output %Q2.1 is set only if both input
%I1.3 and flag %M3.2 are set. In all other cases, output %Q2.1 is
reset.

%I 1.3 %Q2.1

%I 1.5 %Q2.3

b) OR function

a) AND function

%M3.2

%M3.4

Fig. B8.2:
Basic logic connections 
in ladder diagram
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The OR function is obtained via parallel switching of contacts (fig.
B8.2b). Output %Q2.3 assumes the value 1, if either input %I1.5 or flag
%F3.4 assume the value 1, or if both conditions are met simulta-
neously.

Apart from the contact and coil elements, LD provides the unlimited use
functions and function blocks in so far as this feature is supported by
the controller used. 

8.2 Functions and
function blocks

Prerequisite for the incorporation of so-called organisation units, is the
availability of at least one boolean input and one boolean output of the
block in question. If this is not the case, a boolean input with the formal
parameter EN (enable) is added to the corresponding functions or func-
tion modules as well as a boolean output ENO (enable OK). The
boolean inputs/outputs are required to permit the power flow through
the block. 

The addition shown in fig. B8.3a is only undertaken, if a 1-signal is
applied at the input EN. If this is the case, the variables Quantity_1 and
Quantity_2 are added and the result of these variables assigned to the
variable Filling Level. At the same time, the value of output ENO indica-
tes, whether the addition has been executed, activated and correct
(ENO=1). If the block has not been processed correctly, the output
ENO assumes the value 0.

Add_akt Add_ok

TON

IN
PT

Q
ETT#7s

ENOEN

+

%I 1.3 %Q2.4
T_Startup

Quantity_1
Quantity_2 Filling level

b) Invocation of function block

a) Incorporation of functions

Fig. B8.3:
Functions and function

blocks in ladder diagram
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Function modules such as for instance the signal delay shown in fig.
B8.3b can be incorporated in the ladder diagram without additional EN
input and ENO output. The function block is connected with the el-
ements of the current rung in the usual manner via the boolean input IN
and the boolean output Q. If input %I1.3 in fig. B8.3b assumes the
value 1, the function block copy T_Start is processed with the preset
time duration of 7 seconds. The value of output Q of T_Start is as-
signed to output %Q2.4.

Similar to the graphic programming language FBD, the power flow, and
as such processing within a program organisation unit, is from left to
right and from top to bottom. Equally, the processing sequence may
also be changed in LD by using elements for execution control. 

8.3 Evaluation of
current rungs

If the jump condition, in this case the AND operation of input %I1.1 and
flag %M2.5, is met, a jump is executed to the current rung with the
identifier Variant_1. Processing is then continued from this current rung
onwards.

%I 1.1

%Q1.0

%I 2.5

Variant_1

Variant_1:

%M2.5

%M2.1

Fig. B8.4:
Conditional jump in LD

              B-99
Chapter 8

Festo Didactic ••  TP301



B-100              
Chapter 8

TP301 ••  Festo Didactic



Chapter 9

Instruction list
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Instruction list is a textual, assembler-type programming language. Its
instructions most closely ressemble the commands processed in a PLC.

9.1 Instructions

A control program formulated in the Instruction List language consists of
a series of instructions, whereby each instruction must begin with a new
line.

A fixed format is specified for the formulation of an instruction. An in-
struction (fig. B9.1) starts with an operator with optional modifier and, if
necessary for the particular operation, one or several Operands, separ-
ated by commas. Instructions may be preceded by a label followed by a
colon. The label acts as a jump address. Labels are identifed in the
same way as symbols. If a comment is used, this must represent the
last element of the line. A comment is introduced via the string (*, and
ended by the string *).

The value of input %I1.2 is loaded to the accumulator and ANDed with
value of flag %M3.7. The resultant actual result is assigned to output
%Q2.4.

LD
AND
ST

Start: *)
*)
*)

 *)

CommentOperand
Operator and

modifier
Label

(* Part present
(* Drill ok
(* Stamp
(* Advance

Instruction

%I1.2
%M3.7
%Q2.4

Fig. B9.1:
Structure of an instruction
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9.2 Operators

Operator Modifier Operand Description/Significance

LD N Reads the specified operand to the
accumulator and equates the current
result to this operand

ST N Stores the current results at specified
operands

S BOOL Sets boolean operand to the value 1, if the
value of the current result is a boolean 1

R BOOL Resets the boolean operand to 0, if the
value of the current result is a boolean 1

AND N, ( BOOL Boolean AND

& N, ( BOOL Boolean AND

OR N, ( BOOL Boolean OR

XOR N, ( BOOL Boolean exclusive OR

ADD ( Addition

SUB ( Subtraction

MUL ( Multiplication

DIV ( Division

GT ( Comparison: >

GE ( Comparison: >=

EQ ( Comparison: =

NE ( Comparison: < >

LE ( Comparison: <=

LT ( Comparison: <

JMP C, N Label Jump to label

CAL C, N Name Invocation of function blocks

RET C, N Return of function or function block

) Processing of a reset operation
Table B9.1:
Instruction list operators
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IEC 1131-3 defines the operators for the instruction list listed in table
B9.1.

Operators are not linked with any priorities. Accordingly, operations are
processed in the sequence, in which they are entered in the instruction
list. If a different sequence is desired, this can be achieved through the
use of brackets – so-called modifiers. Fig. B9.2 explains the use of
some modifiers.

In instruction list too, the use of functions and function blocks is un-
limited. Functions for typical control technology tasks, such as boolean
logic or arithmetic operations (see fig. B9.3.a) are realised direct via the
operands specified in table B9.1.

9.3 Functions and
function blocks

LDN %I1.1 The value of input %I1.1 is loaded
to the accumulator negated

AND( %I1.2 First the content in the parenthesis is
evaluated– in this example

OR %I1.3 inputs %I1.2 and %I1.3
are OR connected – the result 

) of the parenthesised expression
is AND connected with the 
current result in the accumulator

JMPC Start The jump to the Start label is executed
only if the value of the result
just executed is a boolean 1.

Fig. B9.2:
Use and significance

of modifiers

a) Invocation via operator

LD Temp (* Measured temperature*)
GT 60 (* Greater than 60 *)
OR Manual_off (* OR button Manual_off actuated *)
ST Gate_off (* Close gate *)

b) Invocation via function name

LD %IW3 (* Load input word %IW3 *)
SHL 4 (* Shift %IW3 by 4 bits to the left *)
ST %QW2 (* Store result in output word %QW2 *)Fig. B9.3:

Invocation of functions
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More complex functions such as bit shift functions are invoked by the
function name being placed in the operator field. The current result (in
the Accumulator) must be used as the first argument of the function. If
further arguments are required, these must be specified in the operand
field separated by commas. The value returned by the function, repre-
sents the new current result. 

Function blocks may be invoked according to different mechanisms (fig.
B9.4).

Prerequisite is for the variable T_Startup to be declared as a signal
delay. The invocation of a function block may be clearly set out through
the use of the operator CAL with a list of associated input parameters.

The variable T_Startup from fig. B9.4a, declared elsewhere as a signal
delay, therefore represents a signal delay type block. Being a current
argument, this is assigned the value of input %I1.3 for the activation
input IN and the time duration T#7s for the input PT. As a result, func-
tion block T_Startup is invoked following the actualisation of par-
ameters. 

The transfer of parameters to a function block may also be effected
separately from the actual function block invocation.

a) CAL with list of input parameters

CAL T_startup(IN := %I1.3, PT := T#7s )

b) CAL with separate loading/storing of input parameters
LD T#7s (* Load T#7s *)
ST T_startup.PT (* Store to T_startup.PT *)

(* -input parameter for preselected time *)
LD %I1.3 (* Load %I1.3 *)
ST T_startup.IN (* Store to T_startup.IN *)

(* - transfer parameter for activation *)
(* of module *)

CAL T_startup (* Invocation of function block copy T_startup *)
Fig. B9.4:
Invocation of 
function blocks
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As shown in fig. B9.4b, the actual parameter values are loaded via
elementary IL operations and assigned to the inputs of the function
block. Only after this is function block T-Startup invoked and processed
via a CAL instruction. The advantage of this method lies in the fact that
the timing of the actualisation of arguments and the actual invocation of
the function module may be separate.
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Chapter 10

Structured text
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The Structured Text language is a Pascal-type high-level language,
which incorporates the fundamental concepts of a modern high-level
language, in particular the most important principles for the structuring
of data and instructions. The structuring of data represents a common
constituent of all five programming languages; the structuring of instruc-
tions, however, is an important feature of ST only.

10.1 Expressions

An expression is an elementary constituent for the formulation of in-
structions. An expression consists of operators and operands. Fre-
quently occurring operands are data, variables or function invocations.
However, an operand may also be an expression itself. The evaluation
of an expression supplies a value corresponding to one of the standard
data types or to a user data type. For instance, if X is a number of the
type REAL, then the expression SIN(X) also supplies a REAL type
number. Table B10.1 contains an overview of operators.

Operation Symbol Priority

Parenthesis (expression) highest

Function processing Function name
(Transfer parameter list)
Example: LOG(X), SIN(Y)

Exponentiation **

Sign
Complement

–
NOT

Multiplication
Division
Modulo

*
/
MOD

Addition
Subtraction

+
–

Comparison <, >, ≤, ≥

Equality
Inequality

=
<>

Boolean AND &, AND

Boolean exclusive OR XOR

Boolean OR OR lowest

Table B10.1:
Operators of structured

text language
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The following are examples of expressions:

The evaluation of an expression consists of applying the operators to
the operands, whereby the operators are evaluated in a sequence
defined by their precedence in table B10.1. An operator with higher
precedence is evaluated prior to an operator with lower precedence.

A, B and C are variables of data type INT; A assumes the value 1, B
the value 2 and C the value 3. The evaluation of expression A+B*C
supplies the value 7. If a sequence other than that specified by the
precedence is desired, this is possible by using brackets. Using the
above numeric values, the expression (A+B)*C supplies the value 9 9.

Example

If an operator has two operands, the leftmost operand is to be evalu-
ated first. The expression SIN(X)*COS(Y) is therefore evaluated in the
sequence: Calculation of the expression SIN(X), calculation of the ex-
pression COS(Y), followed by the calculation of the product of SIN(X)
and COS(Y).

As demonstrated in the previous paragraph, a function may only be
invoked within an expression. The invocation is formulated by speci-
fying the function name and the parenthesised list of arguments.

SIN(X)
4*COS(Y)
A ≤ B
A+B+C
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Table B10.2 contains a list of statements possible in the Structured
Text language. A statement may extend beyond one line, whereby the
line break will be treated in the same way as a blank space.

10.2 Statements

Statement Example

Assignment := A := B;
CV := CV + 1;
Y := COS(X);

Invocation of function blocks RS_Horn(S := Drill_faulty, R1 := push button);
Horn := RS_Horn.Q1;

Return from functions and 
function blocks RETURN

RETURN;

Selection statements

IF D:= B*B – 4*A*C;
IF D < 0.0 THEN Number_Sln := 0;
ELSIF D = 0.0 THEN

Number_Sln := 1;
X1 := –B / (2.0*A);

ELSE
Number_Sln := 2;
X1 := (–B + SQRT(D)) / (2.0*A);
X2 := (–B – SQRT(D)) / (2.0*A);

END_IF;

CASE CASE Voltage OF
101 ... 200: Display := too_large;
20 ... 100: Display := large;
2 ... 29: Display := normal;

ELSE
Display := too_small;

END_CASE;

Iteration statements

FOR Total := 0;
FOR I := 1 TO 5 DO

Total := Total + I;
END_FOR;

REPEAT Total := 0;
I := 0;
REPEAT

I := I + 1;
Total := Total + I;

UNTIL I = 5
END_REPEAT;

Table B10.2:
Statements of

structured text language
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Assignments
An assignment is the simplest form of an instruction. This replaces the
actual value of the variable to the left of := with the value of the ex-
pression to the right of :=. Each assignment ends with a semicolon.
One possible assignment (table B10.2) is A := B; whereby the value of
the variable B is assigned to the variable A. As a result of the assign-
ment CV := CV  + 1, the variable CV is increased by 1 as a result of
the expression CV+1.

Function blocks and functions
A defined mechanism is set out in IEC 1131-3 for the invocation and
also the early exit from a function or a function block.

As described, a function is invoked only as part of expression evalu-
ation. The invocation itself consists of the specification of the function
name, followed by the parenthesised list of input parameters.

The invocation of a function block is analogue through the specification
of the instance name (copy) of the function block. This is followed by a
parenthesised list consisting of value assignments to the input par-
ameters. The specification of the name of the input parameter is man-
datory, the individual input parameters may be listed in any sequence.

Instruction Example

Iteration statements
(continued)

WHILE Total := 0;
I := 0;
WHILE I < 5 DO

I := I + 1;
Total := Total + I;

END_WHILE;

Termination of loops EXIT EXIT;

Void instruction ;;

Table B10.2:
Statements of 
structured text language
(continued)
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Moreover, it is not essential for all input parameters to be assigned a
value in every invocation. If a particular input parameter is not assigned
a value in an invocation, the previously assigned value or the initial
value of the parameters applies.

Table B10.2 contains an example of a function block invocation. A horn
is to sound, if a drill is defective. The status of the horn is stored by
means of an RS function block.

The RETURN statement is to provide early exit from a function or a
function block. The following is an example of the use of a RETURN
command:

If the value of X is less than 0, the block containing the sequence of
statements is terminated immediately.

Selection statements – also known as program branch statements – are
available in the form of the IF and CASE statement. Different groups of
statements may be selected and executed in relation to a defined con-
dition. The program organisation unit may branch in different ways.

10.3 Selection
statements

IF statement
The general form of an IF statement is:

IF X <  0  THEN
Value := -1;
Error := 1;
RETURN;

END_IF
Y := LOG(X);

IF boolean expression1 THEN instruction(s)1;
[ ELSIF boolean expression2 THEN statement(s)2; ]
[ ELSE statement(s); ]
END_IF;
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The parts in square brackets are optional, i.e. these may occur in an IF
statement, but need not do so.

The simplest IF statement consists of an IF-THEN construct (simple
branch).

This is demonstrated by the following example

If the condition following the keyword IF is true, the statements following
the keyword THEN are executed. If the condition is not met, the state-
ments in the THEN part are not executed.

In the case of a concrete example this means: If the variable X is less
than 0, i.e. negative, it is affixed a minus symbol and thus represents a
positive value; if this is not the case, the statement with the square root
function is executed immediately.

A simple branch may be achieved by means of an IF-THEN-ELSE con-
struct:

The statements following the keyword THEN are executed, if the
condition following the keyword IF is met; if the condition is not met, the
statements formulated after the keyword ELSE are executed.

The example given deals with production parts. If the part is good
(Part_ok = 1), the THEN part is executed, in this case the number of
correctly produced parts is increased by 1; otherwise a bit is set for
error detection.

IF X < 0 THEN X := –X;
END_IF;
Y := SQRT(X);

Error := 0;
IF Part_ok THEN number := Number + 1;
ELSE error := 1;
END_IF;
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If a branch is to be programmed for more than 2 branches, an IF-
THEN-ELSIF construct may be employed. Table B10.2 illustrates this
by way of an example, whereby the solutions of the quadratic equation
AX2 + BX + C = 0 are established. If the discriminant – in this case
variable D – is less than 0, the subsequent THEN part is executed:
there is no solution, i.e. Number_Sol := 0.

If the first condition is not met, i.e. D is greater or equal to 0, the condi-
tion following ELSIF will be evaluated: If it is met, i.e. D equals 0, the
statements following the keyword THEN will be executed: The only
existing solution is specified as X1.

Otherwise (D being greater than 0), the lines following the keyword
ELSE will be executed: The two possible solutions X1 and X2 are spe-
cified.

CASE statement
If a selection of several possible statement groups is to be made, the
CASE statement may be used.

The standard form for the multiple selection with CASE is:

The CASE statement consists of a selector, which supplies a variable
of type INT during its execution, and a list of statement groups. Each
group is assigned a value (label). The values are separated by commas
if a statement group is dependent on several values. The values may
also represent INT type variables.

CASE Selector OF
Value1: statement(s)1;
Value2: statement(s)2;
...
Valuen: statement(s)n;

[ ELSE
statement(s); ]

END_CASE;
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With the evaluation of the CASE statement, the value of the selector is
determined first, followed by the execution of the first group of state-
ments, for which the computed value of the selector applies. If the
value of the selector is not contained in any of the statement groups,
the statements following the keyword ELSE are executed. If ELSE does
not occur, no statements are executed.

In the example given in table B10.2, the text for a statement is selected
in relation to the available measured value. The values for the selection
of the statement are of the INT type.

It is often necessary to execute statements repeatedly (program loops).
The FOR loop is used, if the number of repetitions has been defined in
advance, otherwise the REPEAT or the WHILE loop is used.

10.4 Iteration
statements

FOR loop
The standard representation of the FOR loop is:

A so-called control variable is set at a specific initial value and in-
creased with every loop executed until the control variable reaches the
end variable. A simple FOR loop is therefore executed according to the
following mechanism:

 

If no incremenets are specified, as formulated above, the control vari-
able automatically increments by 1 with each loop completed. If a differ-
ent increment is required, this may be specified via the keyword BY,
followed by the desired value. The control variable may therefore not be
changed within the loop – i.e. the statements being repeately executed.
Furthermore, the control variable, initial value and final value must be
expressions of the same integer data type (INT, SINT, DINT).

FOR Variable := Expression TO expression [ BY expression ] DO
statement(s);

END_FOR;

FOR counter variable := Initial value TO final value DO
Instructions;

END_FOR;
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The test for the termination condition is made at the beginning of each
iteration, so that the statements are not executed if the initial value
exceeds the final value. A further characteristic of FOR loops is that
these may be nested at any time.

An example of the application of a FOR loop is given in table B10.2. In
this example, an addition of numbers 1 to 5 is realised via the loop.
When the loop is executed for the first time, I has the initial value 1, the
value of the variable Sum is also 1. For the second loop execution, I
has the value 2, the variable Sum reaches the value 1+2=3 etc. After
the fifth and last loop execution, the value for Sum is 15, the counter
variable has reached the final value 5, and processing of the loop is
thus completed.

REPEAT loop
Unlike the FOR loop, with the REPEAT loop the number of iterations is
not defined in advance via a specified final value. Instead, a condition –
the so-called termination condition – is used.

The form of a REPEAT loop is as follows

The termination of the REPEAT loop is tested after the execution of the
loop statements. The loop is therefore executed at least once. The ter-
mination condition must be changed in the loop, since the the loop will
otherwise be executed indefinitely. It is therefore important to ensure
that the loop has actually be completed. The following is to be checked:

Does the termination condition actually include a variable, so that the
condition can supply the value 1 (true)? 
Is the termination condition ever reached?

REPEAT
statement(s);

UNTIL Boolean expression
END_REPEAT;
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An example of the use of the REPEAT loop is demonstrated in table
B10.2. Here too, the first five non-negative integers are added.

In the first loop execution, I has the value 1, the value of Sum is also 1.
A check of the termination condition shows, that this is not met,
whereby the loop is executed again. The loop is executed repeatedly
until the termination condition is true. This will be the case after the fifth
loop execution and the loop is ended. Here too, the result for the vari-
able sum is 15.

WHILE loop
The WHILE loop represents a second option for the formulation of itera-
tions by specifying a termination condition. The standard representation
of a WHILE loop is:

If the boolean expression following the keyword WHILE is met, the
statements following the keyword DO will be executed. The termination
of the WHILE loop are therefore tested prior to the execution of the
loop statements. The loop statements may therefore possibly not be
executed at all. The termination condition is to be changed in the
statements to be repeated.

It is important that the loop conditions are really met in order for the
processing of the loop to be terminated.

The task of adding the numbers 1 to 5 can also be realised by using a
WHILE loop (table B10.2). Unlike the REPEAT loop, the WHILE loop is
executed repeatedly until the termination condition is true. In reality this
means that the loop is executed for as long as I is less than 5. If I is
equal or greater than 5, the loop is no longer processed.

In principle, a REPEAT loop can be replaced by a WHILE loop and vice
versa.

WHILE Boolean expression DO
statement(s);

END_WHILE;
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EXIT statement for the termination of a loop
The EXIT statement must be used in order to terminate iterations be-
fore the end or termination condition is satisfied.

The following program illustrates the example of an EXIT statement:

If the EXIT statement is within a nested loop, exit shall be from the
innermost loop in which the EXIT is located. The next statement to be
executed is the statement immediately after the loop end (END_FOR,
END_WHILE, END_REPEAT). In the example given in fig. B10.1, this
is the statement "S := S +I;".

The following applies in the case of the above example: If the value of
the boolean variable Error is equal to 0, the algorithm for the variable S
provides the value 15. If the variable Error has the value 1, the value
computed for S is 3.

S := 0;
FOR I := 1 TO 2 DO

FOR J := 1 TO 3 DO
IF error THEN EXIT;
END_IF;
S := S + J;

END_FOR;
(* If EXIT statement is executed then jump to this point is executed *)
S := S + I;

END_FOR;
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Chapter 11

Sequential function chart
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IEC 1131-3 defines the sequential function chart (SFC) as an important
programming tool for control systems. Its clearly laid out structure pro-
vides a particularly clear program representation for a control system
and as such is one of the most important parts of IEC 1131-3.

11.1 Introduction

Each program of a sequence control system consists of steps and tran-
sitions (step enabling conditions). Apart from this, it also contains other
important information concerning program execution and the type of
program continuation.

If the program execution is not unique, but an individual path is to be
selected from several possible paths, the representation of the sequen-
tial function chart illustrates this in a particularly graphic form.

The fundamental task of a sequential function chart is to structure a
control program into individual steps and transitions (step enabling con-
ditions) interconnected by directed links.

11.2 Elements of the
sequential
function chart

This requires a representation in graphic form, which makes the inten-
tion of the program clearly recognisable.

The IEC 1131-3 sequential function chart is structured in the form of a
small defined set of simply constructed, graphic basic elements. These
basic elements must be combined to create a control program. How
this is achieved, is defined by a few simple rules in the standard.

The sequential function chart programming language is based, in as far
as possible, on the function chart planning language to DIN 40 719 Part
6 or IEC 848. The only amendments made were those necessary to be
able to generate executable commands for a PLC from a documenta-
tion element. An example of this is the action qualifier S. In the
documentation standard, this qualifier is used to define the modes of
action, i.e. the setting and resetting of an operand. A PLC requires
unique commands. This is why the sequential function chart programm-
ing language employs two qualifiers to realise the two modes of action,
the S and the R qualifier.

Since the sequential function charts requires the storing of status infor-
mation (the active steps etc. at a given moment), the only program
organisation units which can be structured using these elements are
Programs and Function Blocks.

B-120              
Chapter 11

TP301 ••  Festo Didactic



b) Initial step with identifier ***

c) Action block, containing the actions
assigned to a step
Field a: Action qualifier
Field b: Name of action
Field c: Feedback variable
Field d: Action content

d) Transition with identifier ***
or transition condition ***

e) Alternative branch

f) Junction of alternative paths

* * *

* * *

a b c

d

* * *

E F

G H

Step_3

Step_4 Step_5

Step_8

Step_6 Step_7

a) Step with identifier ***

Table B11.1:
Elements of the sequential
function chart
(graphic representation)
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The step
A step contains a number of execution parts of the control program.
Inputs and outputs may only be set or reset in a step. This also means
that all correcting variables issued to the connected plant by a control
program, can only be programmed in such steps.

The execution part assigned to a step, the so-called actions, are formu-
lated within action blocks.

A step is either active, with the associated action being executed at the
time, or inactive. In this way, the status of the connected system is
defined at any given moment by the set of active steps in the control
program.

As shown in table B11.1a, a step is represented graphically by a block.
Each step has a symbolic name, which can be freely selected by the
user. The same set of rules applies for the step name as those already
mentioned for symbolic identifiers: a symbolic name may consist only of
capital and lower case letters, digits and the underline and always
starts with a letter or the underline.

h) Junction of parallel paths

B

M

Step_3

Step_4 Step_5

Step_8

Step_6 Step_7

Table B11.1:
Elements of the sequential

function chart (graphic 
representation, continued)

g) Parallel (simultaneous) branch

Motor_3_on Vacuum_off

Fig. B11.1:
Steps with step names
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All steps in a program or function block formulated in a sequential func-
tion chart must have different names. Even if two steps have the same
execution parts, these are to be designated twice.

The reason for this is as follows:
Information is stored in the controller for each step. The unique assign-
ment of this information to a step as well as the access to this data is
effected via the step name.

The user can thus obtain information regarding

the current status of a step (active, inactive),
the time, for which a step has been active since initiation.

Table B11.2 illustrates the access to step data.

The evaluation of the above data can be useful with regard to monitor-
ing the connected system. Applications may also arise, which require
the use of variables in the control program itself.

a) Motor_3_on.X boolean variable indicating whether the step Motor_3_on
is active (Motor_3_on.X=1) or inactive (Motor_3_on.X=0)

b) Motor_3_on.T Variable of type TIME indicating how long the step
Motor_3_on has been active since initiation.

Table B11.2:
Information regarding
a step
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A special case within the step element is the so-called initial step (table
B11.1b). This is drawn graphically by a double line.

Each network in a sequential function chart has precisely one initial
step, which is executed as the first step within a network.

As already mentioned, the importance of a sequential function chart lies
in its  clearly structured graphic representation of a control program. It
may however also be useful to represent sequence structures textually.
The IEC 1131-3 standard provides an equivalent textual representation
of SFC elements for this, which is as follows for the step element:

The textual representation of sequence structures may, depending on
manufacturer, be part of the documentation of a control program (ven-
dor-dependent); this type of layout of sequence structures does not re-
quire any restrictions with regard to format and character set for print-
ing.

Moreover, it may be possible, for control programs in a standardised
textual representation to be portable between PLCs by different manu-
facturers.

The transition
A transition or step enabling condition contains the logic condition per-
mitting the transition, according to the program, from one step to the
next.

As can be seen from table B11.1dh, the transition is represented by a
horizontal line across the vertical directed link. Each transition has a
transition condition, which is the result of the evaluation of a single
boolean expression. The transition condition can be formulated in any
of the IEC 1131 languages such as LD, FBD, IL or ST.

STEP Motor_3_on
(* Contents of step *)

END_STEP

STEP Vacuum_off
(*Contents of step*)

END_STEP
Fig. B11.2:

Textual representation
of steps
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A transition condition is either true and then has the value 1, or false,
when it has the value 0. Only if the condition is true, is the execution of
the program or the function block continued at this point.

If a condition is always true, it can simply be identified by the number 1
at the transition. Transition conditions of this type which are always true
may occur frequently in a program or function block in a sequential
function chart.

Interconnection of steps and step enabling conditions
In practice, not much can be achieved with a single step or with a
transition. A control program in the sequential function chart will there-
fore always be made up of a succession of numerous transitions and
steps.

A sequence of transitions and steps is termed a step chain, sequence
or also path.

Always true transition condition

Transition condition never true

1

0
Table B11.3:
Special transitions

D

E

F

Step_7

Step_5

Step_6

Fig. B11.3:
Steps and
transitions in sequence
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Here, the transitions and steps must continually alternate. The logic
path via this representation is always from top to bottom. The following
behaviour can be seen in the example shown in fig. B11.3:

Assuming that step Step_5 is active, Step_5 remains active until transi-
tion D is true. Clearing of the transition results in the deactivation of the
preceding step Step_5 and the activation of the successive step
Step_6. As soon as step Step_6 is active, transition E of the controller
is examined. If transition E is true, step Step_6 is ended and step
Step_7 is processed, etc.

The alternative branch
It is frequently necessary for a branch to be programmed into a control
program, whereby the program may be continued in different ways at
this point.

The alternative branch to a different path is represented by a corre-
sponding number of transitions after the horizontal line. In the example
in table B11.1e, the path via the step Step_4 is evolved, if transition E
is true, or the path via step Step_5 evolved, if transition F is true and E
false.

The corresponding counterpart to the alternative branch is a junction of
alternative paths. In the case of a junction of alternative paths, transi-
tions must always be positioned above the horizontal line. 

The program flow in table B11.1f passes from step Step_6 to step
Step_8, if transition G is true or from step Step_7 to step Step_8, if
transition H is true. The decisive factor here is the path through which
the control program reaches this junction of alternative paths. If this
took place via the path step Step_6, the step enabling condition H is
meaningless. Conversely, transition G is not evaluated, if the control
program reached the junction via the path with Step_7.

It should be noted that in the case of alternative branching only ever
one path is followed by the control program. It is therefore not manda-
tory for the conditions to be mutually exclusive.
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If no other specifications exist, the path furthest to the left is evolved.
Priority for the calculation of transitions is therefore given from left to
right. 

This is probably the most commonly implemented variant used by con-
troller manufacturers to achieve alternative branches.

In conjunction with three steps, a section of a program or function block
with triple alternative branch could therefore be as follows.

However, the IEC 1131-3 standard also offers the facility for the user to
define the priority during the execution of the transitions. The definition
of the functionality of alterntive branches in IEC 848, which requires a
user programmed mutual exclusion of transition conditions, is also sup-
ported by IEC 1131-3 as a third method. 

D E F

G H I

Step_6

Step_7

Step_3

Step_4 Step_5

Fig. B11.4:
Alternative branch: 
Processing of transitions
from left to right
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In contrast with the previous examples the numbers in the path in fig.
B11.5 indicate a user-defined priority of the transition evaluation. The
path with the lowest number has the highest priority.

As such, a transition is evolved from step Step_7 to step Step_9, if
transition E is true, or a transition is evolved from step Step_7 to step
Step_8, if transition D is true and transition E is false.

A loop structure may be regarded as a special case of alternative
branching, whereby one or several paths return to a preceding step.

In fig. B11.6 the program flow evolves from step Step_5 to step Step_4,
if transition F is true and E is false. The evolution of step sequence
Step_4, to Step_5 may be repeated in this way.

D E
2 1

Step_7

Step_8 Step_9Fig. B11.5:
Alternative branch with

user-defined priority

E F

C

D

Step_6

Step_5

Step_3

Step_4

Fig. B11.6:
Representation of a loop
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Parallel branch
A completely different functional element of the sequential function
chart is parallel branching.

This is represented by a double line and a transition above this line
(table B11.1g). As soon as transition B is fulfilled, an evolution from
step Step_3 to step Step_4 and Step_5. These two steps are executed
simultaneously.

A parallel branch determines that all connected paths are to be acti-
vated simultaneously and evolved independently of one another. In the
case of the matching counterpart, and the joining of parallel paths, the
transition is always represented underneath the horizontal double line.

Parallel joining contains a mechanism for synchronisation. Only when
all the paths coming from above have been completely executed, is the
subsequent transition evaluated. If it is true, the transition to the next
step takes place. In table B11.1h this means: both steps Step_6 and
Step_7 must be evolved prior to the evaluation of transition F.

When step enabling condition F has been fulfilled, the three paths with
steps Step_4, Step_5 and Step_6 and Step_7 must be evolved simulta-
neously.

Depending on the contents of transition G between the two steps
Step_6 and Step_7, the control program may have to wait until transi-
tion G is fulfilled. The lower transition H is therefore only examined if
the right path has been evolved completely. This can only be the case,
if transition G in this path is true.

F

G

H

Step_6Step_4 Step_5

Step_7

Fig. B11.7:
Representation of a
triple parallel branch

              B-129
Chapter 11

Festo Didactic ••  TP301



Each transition is assigned a transition condition (step enabling condi-
tion). This provides the result of a boolean value.

11.3 Transitions

In the simplest case, a step enabling condition can be specified by the
interrogation of an input of the controller or another boolean variable. It
is however also possible to program considerably more complex step
enabling conditions.

Formulation of Transition conditions
Transition conditions can be programmed in the following languages

Ladder diagram
Function block diagram
Instruction list
Structured text

The contents of the transition condition are either specified directly at
the transition (see fig. B11.8) or linked with the transition via a transition
name (see fig. B11.9).

&%IX3

%IX3
a)

b)

c)

Transition condition
in LD - language

Transition condition
in FBD - language

Transition condition
in ST - language

Step_3

Step_4

Step_3

Step_4

Step_3

Step_4

%IX3 & %MX1

%MX1

%MX1

Fig. B11.8:
Direct specification of a

transition condition
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Here, two results are connected via a logic AND function, whereby the
transition condition will not be met until both input %IX3 and flag %MX1
assume the value 1.

The power or signal passes from left to right in the graphic languages
LD and FBD, the LD or FBD network part is defined on the left, next to
the transition symbol (horizontal line).

The boolean expression in ST languages is defined to the right of the
transition symbol.

Tran_3_4

%IX3 Tran_3_4

&%IX3 Trans_3_4

TRANSITION Tran_3_4:

END_TRANSITION

END_TRANSITION

TRANSITION Tran_3_4:

%IX3

END_TRANSITION

TRANSITION Tran_3_4:

LD

AND

END_TRANSITION

TRANSITION Tran_3_4:

a)

b)

c)

d)

Transition condition
in LD - language

Transition name

Transition condition
in FBD - language

Transition condition
in IL - language

Transition condition
in ST - language

Step_3

Step_4

%MX1

%MX1

%MX1

: = %IX3 & %MX1;

Fig. B11.9:
Assignment of a
transition condition to the
transition by specifying
a transition name
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If a transition name is used as an assignment mechanism from transi-
tion condition to transition, the transition name must refer to a TRANSI-
TION...END_TRANSITION construct.

The transition condition is formulated within this construct and the
boolean result mapped to the transition name.

The transition names within a program organisation unit, like the step
names, must all differ from one another. A name is formulated accord-
ing to IEC 1131-3 rules applicable to identifiers.

IEC 1131-3 also defines an equivalent textual representation for the
graphic element Transition. The actual transition condition is pro-
grammed either in the IL or St language.

a) Transition condition formulated in ST language

STEP Step_3: END_STEP
TRANSITION FROM Step_3 TO Step_4

:= %IX3 & %MX1;
END_TRANSITION
STEP Step_4: END_STEP

b) Transition condition formulated in IL language

STEP Step_3: END_STEP
TRANSITION FROM Step_3 TO Step_4

LD %IX3
AND %MX1;

END_TRANSITION
STEP Step_4: END_STEP

Fig. B11.10:
Textual representation

of transitions
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A step represents the execution part of a sequential function chart. Only
within steps can a program or a function block within a controller in-
fluence the connected system via its outputs, by setting or resetting the
outputs.

11.4 Steps

Structure of a step within actions
Each step may contain several actions. Each of these actions is to per-
form a job for the connected system. The structuring of a step into
individual actions initially is merely an ordering function. This makes the
step clearer, since it creates clearly defined limits between the individ-
ual job steps. However, since each action is assigned a qualifier, the
structuring of a step into individual actions also define an additional
functionality.

A step which does not contain any actions may be seen as a special
case. Its sole purpose is to separate two step enabling conditions,
which are to be evaluated consecutively. It thus permits a wait function,
whereby the first step enabling condition has priority, irrespective of
whether the second is already met or not, and the second step enabling
condition must be met subsequently.

Action blocks
The graphic programming of steps is effected via individual action
blocks. Each action is thereby connected with a particular characteristic.

An action block is represented in tabular format, which contains fixed
positions for the specification of the action qualifier, the name of the
action and the action content. In addition, a feedback variable may also
be entered.

a b c
d

Field a: Action qualifier:
N = non-stored
S = set, stored
R = reset
P = pulse (unique)
L = time limited

D = time delayed
DS = time delayed and stored
SD = stored and time delayed
SL = stored and time limited

Field b:
Field c:
Field d:

Name of action
Feedback variable
Action content

Fig. B11.11:
Graphic representation
of action block
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Again, the name b of an action represents a standard symbolic identi-
fier, which acts purely as a means of differentiation and has no further
significance.

Since a list of actions often forms part of a step, it may also be repre-
sented in conjuction with this.

The assignment of actions to a step in graphic form is effected by
means of action blocks.

The assignment may however also be formulated textually. In the case
of the example shown in fig. B11.12, this results in the following repre-
sentation:

The contents of an action, i.e. the action itself, may be defined by
means of several methods:

Specification of a boolean variable
Programming in instruction list
Programming in structured text
Ladder diagram 
Function block diagram
Sequential function chart

L Var_1

Var_1
T#10s

P
N

Action_1Step_8

Action_2
Action_3

Fig. B11.12:
List of action blocks

STEP Step_8
Action_1( L, T#10s, Var_1 );
Action_2( P );
Action_3( N );

END_STEP
Fig. B11.13:

Textual representation of a
step with actions
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The use of a boolean variable represents a simple and frequently used
form of an action. In many cases, however, more complex actions con-
taining a useful logic connection of different information will be required.

In the examples B11.14 to B11.16, the output %QX1.2 is set, if input
%IX0.5 is set or if flags %MX1 and %MX3 are set. If neither is the case
output %QX1.2 is reset.

Instead of an individual network of a statement sequence, several net-
works are also permissible within an action in textual languages. In this
way, it is possible to incorporate a very wide range of actions in a step,
and again a step itself may contain sequence structures (fig. B11.17).

&
>=1 %QX1.2

Action_2

%IX0.5

%MX1
%MX3

Fig. B11.14:
Formulation of actions:
graphic declaration in FBD

%IX0.5 %QX1.2

Action_2

%MX1 %MX3 Fig. B11.15:
Formulation of actions:
graphic declaration in 
LD language

IL language ST language

ACTION Action_2:
LD %IX0.5
OR( %MX1
AND %MX3
)
ST %QX1.2

END_ACTION

ACTION Action_2:
%QX1.2 := %IX0.5 OR (%MX1 AND %MX3);

END_ACTION

Fig. B11.16:
Formulation of actions:
textual declaration

              B-135
Chapter 11

Festo Didactic ••  TP301



If individual fields of an action block are not required, such as for in-
stance if a boolean variable is used as action content, a further simplifi-
cation in the representation of an action block is permissible.

A feedback variable (c field) may be entered in each action block.
Feedback variables are programmed within actions by the user and in-
dicate their completion, timeout or error conditions. Fig. B11.19 indi-
cates a frequently recurring application. Here the sequence of steps
and transitions is structured in such a way that the action of a step sets
the subsequent step enabling condition.

S %QX12Fig. B11.18:
Short representation

of an action block

L
T#1s

Action_4

Part_present

Start

Colour_determineColour

C_okFig. B11.17:
Formulation of actions:

Inclusion of SFC elements
in an action

S Pos_1

S
S

R Pos_2

Pos_2

Pos_1

Step_3

Step_4

Step_2 Cylinder_1

Cylinder_2

Vac_on

Vacuum_on Vac_on

Cylinder_1

Fig. B11.19:
Use of feedback variables
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Mode of action of action qualifiers
The type of execution of the actions programmed by the user is defined
by the associated action qualifier.

IEC 1131-3 defines the following action qualifiers

N Non-stored
S Set (stored)
R Overriding reset
P Pulse (unique)
L Time limited
D Time delayed
DS Time delayed and stored
SD Stored and time delayed
SL Stored and time limited

Each action is the equivalent of exactly one of these qualifiers. In addi-
tion, the qualifiers L, D, DS, SD, SL have an associated duration of
type Time, since these define a time behaviour of the action. 

The qualifiers have a precisely defined significance. If a step is inactive,
none of the action of the step is executed. With an active step, the
following methods apply for the execution of an action qualifier.

N Non-stored
the action is executed for as long as the step is active.

In the above example, the output %QX12 is set for as long as the step
containing this action is active. On completion of the step, i.e. as soon
as the subsequent enabling condition is met, the output is automatically
reset.

%QX12

1
0
1
0

N %QX12

Step
active

Fig. B11.20:
Non-stored action
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S Set (stored)
the execution of the action is executed permanently set (set stored).

In this example, the output %QX12 is set for as long as the step con-
taining this action is active. The output also remains set, when the sub-
sequent step enabling condition is met and the step being considered is
no longer active. The output can only be reset in another step, in an-
other action, defined with qualifier R.

R Reset
a previously set action (in another step) executed with the qualifier
S, DS, SD, L or SL is cancelled.

Output %QX12 has been set in another step in an action with one of
the qualifiers S, DS, SD, L or SL and reset again via this action.

%QX12

1
0
1
0

S %QX12

Step
active

Fig. B11.21:
Set (stored) Action

%QX12

1
0
1
0

R %QX12

Step
active

Fig. B11.22:
Reset action
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P Pulse (unique)
unique execution of the action

During the initial execution of the action via the controller within the
processing of the step, output %QX12 is set exactly once and then
reset again. The output is reset uniquely again only after the exiting the
step and a fresh re-entry into the step.

L Time limited
The action is executed for a specific time.

Output %QX12 is set for 10 seconds and subsequently reset again.
This requires the step containing this action to be active for a period of
at least 10 seconds. If the subsequent step enabling conditions are met
prior to this time, the action time of the output is reduced also, since it
is reset at the end of the step in any case.

%QX12

1
0
1
0

P %QX12

Step
active

Fig. B11.23:
Unique action

%QX12

1
0
1
0

10s

L
T#10s

%QX12

10s

Step
activ

Fig. B11.24:
Time limited action
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D Time delayed
The execution of the action is delayed until the end of the step.

Here, output %QX12 is not set until 10 seconds have expired and re-
mains set until the step becomes inactive. If the duration during which
the step is activated is less than 10 seconds, the output will not be set
during the processing of this step.

DS Time delayed and stored
The execution of the action is time-delayed and maintained beyond
the end of the step.

In this example too, output %QX12 is set after 10 seconds have expi-
red. However, it remains set after completion of the step. It must be
reset explicitely via another action with the qualifier R (in another step).
If the duration of the step is not sufficiently long, in this case less than
10 seconds long, the output will never be set.

%QX12

1
0
1
0

10s

D
T#10s

%QX12

10s

Step
active

Fig. B11.25:
Time delayed action

DS
T#10s

%QX12

%QX12
1
0

10s

1
0

1
0

10s

Step
active

R
active
(in another step)

Fig. B11.26:
Time delayed and

stored action
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SD Stored and time-delayed
the execution of the action is time delayed and is maintained beyond
the end of the step

Here too, output %QX12 is set after the expiry of 10 seconds. It re-
mains set following the end of the step and can only be explicitly reset
via another action with the qualifier R in another step. Unlike the mode
of action of the DS qualifier, it is not necessary for the step to remain
active beyond the duration of the delay for the output to be set.

SL Stored and time-limited
the action is executed continuously for a specific period.

The output is set for 10 seconds and then reset again. In contrast with
the mode of action of the L qualifier, it is not necessary for the step to
be active for a minimum of 10 seconds.

SD
T#10s

%QX12

%QX12
1
0

10s

1
0

1
0

10s

Step
active

R
active
(in another step)

Fig. B11.27:
Stored and
time delayed action

SL
T#10s

%QX12

%QX12
1

0

10s10s

1
0

Step
active

Fig. B11.28:
Stored and
time delayed action
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If the subsequent step enabling condition is met prior to this time expir-
ing, i.e. if the step is active for less than 10 seconds, the active period
of the output remains unaffected by this. The output can be reset at any
time via another action with the qualifier R.

The mode of action of the individual qualifiers has been illustrated in
the example of a boolean variable as an action. If more complex, i.e.
non boolean actions are required, the type of execution is marginally
different to the previously examined boolean variables. The networks
are continually processed for as long as the step is active. As soon as
the subsequent step enabling condition is met, however, the last,
unique, execution of the networks is carried out once more.

This definition enables the targeted resetting of variables at the end of
the processing of an action, when the N qualifier is used for more com-
plex actions. 

If step Step_5 is deactivated, the last processing of the networks takes
place with the value 0 for step flag Step_5.X. This results in output
%QX1.0 being reset to 0 when the step is exited.

N

&
%IX1.0 %QX1.0

SR_1

SR
%IX1.5 %QX1.5S1

R
Q1

Step_5.X

Step_5 Action_1

%MX12

Fig. B11.29:
Complex action

in FBD language
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Problem description
Components are transported together on a conveyor belt to a dual pro-
cessing station. The drilling and countersinking units then move down-
wards as soon as a component is present. Two cylinders 1.0 and 2.0
are used to move the two machine tools. The conveying device is in-
dexed by one working position via a third cylinder 3.0.

11.5 Example

Two sensors B1 and B2 are provided to detect whether a workpiece is
located underneath the drill or the countersink. The required drilling
and countersink depths are sensed via two end position sensors B6
and B7. The initial positions of the transport cylinder, drill and counter-
sink can be detected via the values of sensors B3, B4 and B5. Sensor
B8 indicates an extended transport cylinder.

The system cannot always guarantee that a workpiece will be deposited
underneath both the drill unit and the countersink after each transport
movement. Processing should then be interrupted in the case of a mis-
sing workpiece. If both workpieces are missing at the same time,
neither of the two tools should be lowered.

3.0

B5 B8

1.0 2.0

B3

B6

B1

B4

B7

B2

Fig. B11.30:
Positional sketch
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Allocation list 

Problem
A control program is to be designed for this task. The solution is to
achieve a configuration by means of a sequential function chart. The
conditions and actions are then to be applied to the steps and transi-
tions. The program is to be executed cyclically.

To simplify matters, you may assume that there is no need to use
timers to compensate for positioning tolerances.

Equipment
designation

PLC input/
PLC output

Task

B1
B2
B3
B4
B5
B6
B7
B8
Y1
Y2
Y3

%IX0.1
%IX0.2
%IX0.3
%IX0.4
%IX0.5
%IX0.6
%IX0.7
%IX0.8
%QX0.1
%QX0.2
%QX0.3

Detecting workpiece under the drill
Detecting workpiece under countersink 
Initial position of drill unit (up)
Initial position of countersink (up)
Initial position of transport cylinder
Lower end position of drill unit reached
Lower end position of countersink reached
Transport cylinder extended
Lower drill unit
Lower countersink
Transport feed

Table B11.4:
Allocation list
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Solution 

R Y1
R Y2
R Y3B3 B4 B5

B1

S A

B6

R A

B3

1

S C

B8

B1

/

B2

S B

B7

R B

B4

B2

/

Start

Drill

D_up

Transport

Countersink

C_up

Fig. B11.31:
Program in 
sequence language
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All cylinders are brought into their initial position in one initial step. At
the end of the program, this step is also used to retract the cylinder
extended during the last step for the transport device.

When all the cylinders are in their initial position, a parallel branch with
two sequences is started for drilling and countersinking. Both se-
quences in this example contain the same tasks, but use different tools.
The lefthand sequence lowers the drill unit and lifts it again, and the
righthand sequence evolves identically for the countersinking. The se-
quences merely differ in their use of sensors and actuators. A void step
is incorporated at the top and bottom of both sequences to maintain the
necessary sequence steps and transitions.

The program for the drilling unit evolves as follows. It detects whether a
workpiece is available via the value of sensor B1. If this value is equal
to 1, the workpiece is in the required position and the drilling process
starts. Otherwise the entire drilling process is bypassed in an alternative
path. Drilling of the hole starts with the lowering of the drill by setting
Y1. When the lower end position is reached, i.e. drilling of the hole has
been completed, sensor B6 signals the end of drilling. In the next step,
the drill is returned to its normal position at the top. This part of alterna-
tive branching ends when the drill has reached the top. The program
follows the same procedure for countersinking.

When both parallel sequences have been completed, a transition takes
place in the program to the transport step. The necessary synchronisa-
tion – i.e. drilling and countersinking ready – is ensured by the sequen-
tial function chart and therefore does not require special treatment. A
true step enabling condition is always inserted at this point in order for
the steps and transitions to alternate.

In the last step Transport, the cylinder of the transport device is ex-
tended and the awaited completed action in the next transition condi-
tion. Thereafter, the whole process starts anew.
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Chapter 12

Logic control systems
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Logic control systems are controllers programmed through the use of
boolean operations. All logic operations are processed and executed
during a machining cycle.

12.1 What is a logic
control system?

Control tasks realised typically in the form of logic control, are charac-
terised by the fact that no time duration is given within the process, but
all or most of the conditions of the control program are examined simul-
taneously.

Examples of logic control systems can therefore be found in PLC appli-
cations, where safety aspects are of importance. The monitoring of cer-
tain tasks is often required to be permanent and independent of the
time-related execution of the process. These requirements apply for in-
stance in:

Protective circuits: a device may only load, if all protective devices
are switched on
Safety interlocking

Logic control systems without latching properties may be described by
means of a combination of boolean operations, whereby the output sig-
nals of a controller are determined by a combination of input signals at
a given time.

12.2 Logic control 
systems without
latching properties

The basic logic operations AND, OR and NOT may be used to create
any complex logic operations – and as such also control systems. 

A number of boolean algebra methods such as function tables, boolean
equations and disjunctive normal form (DNF) are used to describe the
problem and to find a solution. The importance of these methods is
demonstrated amongst other things in the more complex applications
for logic control systems. The actual programming of a logic control
system is preferably in the languages ladder diagram or function block
diagram.
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Typical boolean operations
The following represents basic control technology tasks such as
boolean operations realised via PLC. 

The solutions are represented in the languages LD, FBD, IL and ST.
The solution sections are preceded by a declaration of the necessary
PLC inputs and outputs. In addition, the description options of a func-
tion table and boolean equation are also listed.

Negation:
The output signal assumes the value 1, if the input signal has the value
0 and vice versa.

Lamp H1 is illuminated as long as switch S1 is not actuated; it is extin-
guished, if the switch is closed. The purpose of S1 is therefore to switch
off the lamp.

Example

S1 H1

0 1

1 0

H1 = S1

Boolean equationFunction table

Fig. B12.1:
Description methods

VAR
S1 AT %I2.5 : BOOL;
H1 AT %Q1.4 : BOOL;

END_VAR Fig. B12.2:
Declaration of variables
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AND-operation:
The output signal only assumes the value 1, if all input signals have the
value 1.

Lamp H1 is to be switched on only if the two switches S1 ad S2 are
actuated.

Example

S1 H1

b) FBD

S1 H1NOT

d) STc) IL

H1  : =  NOT S1;LDN
ST

S1
H1

a) LD

/

Fig. B12.3:
Negation

S1 S2

0 0

1 0

H1

0

0

0 1 0

1 1 1

>H1 = S1 S2

Boolean equationFunction table

Fig. B12.4:
Description methods

VAR
S1 AT %I2.5 : BOOL;
S2 AT %I2.6 : BOOL;
H1 AT %Q1.4 : BOOL;

END_VARFig. B12.5:
Declaration of variables
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OR-operation:
The output signal assumes the value 1, if at least one input signal has
the value 1.

Lamp H1 is to be switched on, if at least one switch, S1 or S2 is actu-
ated.

Example

S1 H1

b) FBD

d) STc) IL

H1  : =  S1 AND S2;LD
AND
ST

S1
S2
H1

a) LD

S2
&

S2
H1S1

Fig. B12.6:
AND operation

>H1 = S1 S2S1 S2

0 0

1 0

H1

0

1

0 1 1

1 1 1

Boolean equationFunction table

Fig. B12.7:
Description methods

VAR
S1 AT %I2.5 : BOOL;
S2 AT %I2.6 : BOOL;
H1 AT %Q1.4 : BOOL;

END_VAR Fig. B12.8:
Declaration of variables
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Combined logic operations

Lamp H1 is to be illuminated only, if precisely two of the three switches
S1, S2, S3 are actuated.

Example

The first to be created is the function table, whereby those com-
binations are selected, which provide the result 1. These are lines 4, 6
and 7. The boolean equation and thus the solution can be created on
the basis of this combination. The conversion of the solution into the
individual programming languages is contained in fig. B12.12.

S1 H1

b) FBD

d) STc) IL

H1  : =  S1 OR S2;LD
OR
ST

S1
S2
H1

a) LD

>=1

S2
H1S1

S2

Fig. B12.9:
OR operation

S1 S2

0 0

0 1

S3

0

0

0 0 1

0 1 1

1 0

1 1

0

0

1 0 1

1 1 1

H1

0

0

0

1

0

1

1

0

>H1 = (S1 S2 > S3)

>(S1 S2 > S3)>

>(S1 S2 > S3)>

Boolean equationFunction table

Fig. B12.10:
Description methods
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VAR
S1 AT %I2.5 : BOOL;
S2 AT %I2.6 : BOOL;
S3 AT %I2.7 : BOOL;
H1 AT %Q1.4 : BOOL;

END_VAR Fig. B12.11:
Declaration of variables

S1 H1

b) FBD

d) STc) IL

(NOT S1 AND S2 AND S3)
OR (S1 AND NOT S2 AND S3)
OR (S1 AND S2 AND NOT S3);

LD (
AND
ANDN
)
OR (
ANDN
AND
)
OR (
AND
ANDN
)
ST

S3
S2
S1

S1
S2
S3

S1
S2
S3

H1

a) LD

>=1 H1

S3

H1  : =

/

S2 S3

S1 S2

/

S1 S2 S3

/

&

S3
S2
S1

&

S3
S2
S1

&

S3
S2
S1

Fig. B12.12:
Combination of 
boolean operations
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Many PLC applications require elementary memory operations. A mem-
ory function constitutes the retention, i.e. storage of a briefly occurring
signal status. At a given instant, the output signals are dependent not
only on the combination of input signals, but also on "previous
statuses".. .

12.3 Logic control 
systems with
memory function

The example given here is that of a switch for switching on and off a
lamp.

IEC 1131-3 defines two function blocks for the realisation of memory
functions. These are function block SR (primarily setting) and RS (pri-
marily resetting). A description of the blocks follows below.

Function block SR

The standard function block SR contains a dominant setting flipflop (bi-
stable memory with preferred status 1). A 1-signal at the setting input
S1 sets the flipflop, i. e. the value of Q1 becomes 1. The value which
applies at reset input R is immaterial. A 1-signal at reset input R only
brings output Q1 to value 0, if set input S1 is also 0. The set input with
this flipflop is therefore dominant.

SR
S1
R

Q1BOOL
BOOL

BOOL

Fig. B12.13:
Function block SR,

primarily setting
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Function block RS

The standard function block RS contains a dominant resetting flipflop
(bistable memory with preferred status 0). A 1-signal at the reset input
R1 resets the flipflop, i.e. the value of Q1 becomes 0. The value which
applies at the setting input S is immaterial.

The following example illustrates the use of elementary memory oper-
ations.

If sensor B1 has a 1-Signal, this indicates an error status in the system.
A horn H1 is sounded. The horn can only be switched off by actuating
push-button S1. It is possible to switch off the horn, even if the B1-
signal continues to be applied.

Example

In the languages FBD and ST, memory operations are realised by in-
voking a copy of the RS function block. The copy in this example has
the name RS_H1. The invocation in FBD is effected by means of grafi-
cally linking the current transfer parameters with the inputs of the func-
tion block copy. Since the value of the function block copy is relevant,
the output of the function block copy is connected correspondingly. 

RS
S
R1

Q1BOOL
BOOL

BOOL

Fig. B12.14:
Function block RS,
primarily resetting

VAR
B1 AT %IX1 : BOOL; (* Sensor detects error status *)
S1 AT %IX2 : BOOL; (* Push button *)
H1 AT %QX1 : BOOL; (* Horn *)
RS_H1 : RS; (* Flip-flop named RS_H1 for status *)

(* of horn *)
END_VAR Fig. B12.15:

Declaration of variables
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In the textual language ST, the invocation is effected by means of spec-
ifying the function block copy. The current parameters are also listed
simultaneously. The value of the output of the function block copy
RS_H1 can be accessed via the variable RS_H1.Q1; the name of the
output variable is therefore defined via the names of the function block
copy and the names of the desired output.

The languages LD and IL have their own operations for stored setting
or resetting of variables, whereby the use of an RS function block can
be omitted. It should be noted that the sequence of set and reset com-
mands is crucial for the behaviour of the PLC. The command, which is
to be dominant – in this instance the reset command – must only occur
after the set command in the program, so that it is the last command to
be executed and thereby determines the behaviour – in this case the
output.

b) FBD

d) STc) IL

LD
S
LD
R

or

CAL
LD
ST

B1
H1
S1
H1

RS_H1 (S := B1, R1 := S1)
RS_H1.Q1
H1

a) LD

RS_H1 (S := B1, R1 := S1);
H1 := RS_H1.Q1;

RS
S

R1

Q1 H1

RS_H1

S1

B1
S1 H1

R

B1 H1

S

Fig. B12.16:
Use of function block RS
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Signals reaching the inputs via sensors are evaluated as 0 or 1 signals
by the central control unit of the PLC, whereby the duration of signal
statuses 0 and 1 is determined by the sensor.
For instance: A 1-signal applies for as long as a push button is
pressed, otherwise a 0-signal is received.

12.4 Edge evaluation

In many cases, however, it is not the signal itself which matters, but the
exact instant, during which the signal changes. This type of signal
change is termed Edge .

To elucidate this, imagine the switches (push buttons) of a lighting sys-
tem, where the edge evaluation is mechanically implemented. By actua-
ting the push button, the light comes on (irrespective of how long this
push button is pressed). If the push button has been released in the
meantime, the light may be switched of by pressing the push button
again.

Example

In exactly the same way, the moment in which the input signal
changes from 0 to 1 must be registered in a PLC, since only ever one
single reaction per push button actuation may be triggered (196 irre-
spective of how long the 1-signal applies. This prevents a process from
being put in motion repeatedly by the controller, should a push button
be actuated for too long. The edges of the input signal are evaluated
for each program.

In this context it is referred to as edge detection . Each binary signal
has a rising and a falling edge:

Rising and
falling edges

Rising edges  mark the instants, in which a signal level changes from 0
to 1.

Falling edges  mark the exact instants, when a signal level changes
from 1 to 0.

0

1

rising
edge

rising
edge

falling
edge

falling
edge Fig. B12.17:

Rising and falling edges
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Whether rising or falling edges are evaluated within a program or func-
tion block depends on how the respective sensor is wired (normally
closed/normally open contact) and how it is used.

A push button (normally open contact), for instance, creates a rising
edge the moment it is pressed and a falling edge the moment it is
released.

IEC 1131-3 provides two standard function blocks for the evaluation of
edges.

Function block R_TRIG, rising edge
The standard function block R_TRIG (rising) is used for the detection of
rising or positive edges. Its output Q has the value 1 from one execu-
tion of the function block to the next, if its input CLK (Clock for pulse)
changes from 0 to 1.

Function block F_TRIG, falling edge
A falling or negative switching edge is detected by means of the  func-
tion block F_TRIG (falling). If a change has taken place at input CLK
from 1 to 0, output Q assumes the value 1 for one processing cycle.

F_TRIG
CLK QBOOL BOOLFig. B12.19:

Function block F_TRIG,
falling edge

R_TRIG
CLK QBOOL BOOLFig. B12.18:

Function block  R_TRIG,
rising edge
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The following example shows the programming of the edge evaluation
in the languages FBD, LD, IL and ST, whereby the rising edges are
evaluated.

Actuation of a push button S1 causes the door of a furnace to be
opened. A repeat actuation of push button S1 causes the door to be
closed.

Example

VAR
S1 AT %IX1 : BOOL; (* Switch for door *)
H1 AT %QX1 : BOOL; (* Coil for actuation of cylinder *)

(* for door *)
RS_Y1 : RS; (* Flip-flop named RS_Y1 for status *)

(* of coil *)
R_TRIG_S1 : R_TRIG; (* Function block named R_TRIG_S1 *)

(* for detection of edge at S1 *)
END_VAR Fig. B12.20:

Declaration of variables

b) FBD

&Y1

&
Y1

RS
S

R1

Q1 Y1

RS_Y1

R_TRIG
CLK QS1

R_TRIG_S1

a) LD

S1 Y1Y1

P S/

S1 Y1Y1

P R

c) IL

CAL
LD
ANDN
S
LD
AND
R

R_TRIG_S1 (CLK := S1)
R_TRIG_S1.Q
Y1
Y1
R_TRIG_S1.Q
Y1
Y1

d) ST

R_TRIG_S1 (CLK := S1);
RS_Y1 ( S := R_TRIG_S1.Q  &  NOT Y1,

R1 := R_TRIG_S1.Q  & Y1);
Y1 := RS_Y1.Q1;

Fig. B12.21:
Use of function block
R_TRIG
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In the languages FBD, IL and ST, edge detection is effected by means
of invoking a R_TRIG function block. The name of the function block
used in the example is R_TRIG_S1; R_TRIG_S1 represents a copy of
the function block type R_TRIG.

The LD language has special contacts for the evaluation of edges,
whereby the invocation of an R_TRIG function block is omitted.

B-160              
Chapter 12

TP301 ••  Festo Didactic



Chapter 13

Timers
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Many control tasks require the programming of time. For example, cy-
linder 2.0 is to extend, if cylinder 1.0 is retracted – but only after a delay
of 5 seconds. This is known as a switch-on signal delay. Switch-on
signal delays during the switching on of power sections is often also
required for reasons of safety.

13.1 Introduction

The timers of a PLC are realised in the form of software modules and
are based on the generation of digital timing. The counted clock pulses
are derived from the quartz generator of the microprocessor. The
desired time duration is set in the control program.

IEC 1131-3 defines three types of timer function blocks:

TP Pulse timing
TON On-delay timing
TOF Off-delay timing 

Time duration is specified by means of a defined character format. A
time specification is introduced by the characters T# or t#, followed by
the time elements, i.e. days, hours, minutes, seconds, milliseconds.

The following represent examples of permissible time specifications:

Details regarding time specifications may be found in chapter 6.2.

d Day

h Hour

m Minute

s Second

ms Millisecond

T#2h15m

t20s

T#10M25S

t#3h_40m_20s
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The function block TP (timer pulse) is a  pulse timer, which is started by
a shorter or longer 1-signal at input IN. A 1-signal now applies at output
Q for the time specified at its input PT (preset time). The output signal
Q therefore has a fixed duration, which can be specified by means of a
time specification. It cannot be started again while the pulse timer is
active. The current time value of the pulse timer is available at output
ET (estimated time).

13.2 Pulse timer

0

PT

ET

Q

IN

Fig. B13.1:
Function block TP, 
Pulse timer

QIN
TP

PTTIME
BOOL BOOL

ET TIME
Q

Fig. B13.2:
Timing diagram of 
pulse timer TP
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The use of a pulse timer is represented with the help of an example.

Pressing of the start button S2 is to cause the piston of a cylinder to
advance. This mechanism is to be used to clamp workpieces. When the
piston has advanced fully, it is to remain in this position for 20 seconds.
The cylinder then returns to its initial position.

Example

The control task has been programmed in the language FBD as an
example. A timer function block may of course be used in any of the
other languages. An example using a switch-off delay is given in chap-
ter 13.4 to demonstrate this for the languages FBD, LD, IL and ST.

VAR
S2 AT %IX1 : BOOL; (* Start button  *)
B1 AT %IX2 : BOOL; (* Cylinder retracted *)
B2 AT %IX3 : BOOL; (* Cylinder advanced *)
Y1 AT %QX1 : BOOL; (* Advance cylinder  *)
SR_Y1 : SR; (* Flip-flop named SR_Y1 for status *)

(* of Y1 *)
TP_Y1 : TP; (* TP function block named TP_Y1 *)

END_VARFig. B13.3:
Declaration of variables

&

B1
S2

SR
S1
R

Q1

SR_Y1

Y1

&
TP

IN
PT

Q

TP_Y1

ETT#20s
B2

B2
Fig. B13.4:

Use of pulse timer in FBD

B-164              
Chapter 13

TP301 ••  Festo Didactic



The valve Y1 for the actuation of the cylinder is switched via an SR
flipflop SR_Y1. The set condition for SR_Y1 is met, if the start button
for the retracted cylinder is actuated. As soon as the cylinder has ad-
vanced, the pulse timer TP_Y1 with the time of 20 seconds is started
by the rising edge of sensor B2. Output Q of TP_Y1 now assumes a
1-signal. When the pulse timer has expired – the 20 seconds have
passed – 0 applies  at output Q of TP_Y1. The reset condition for
SR_Y1 is fulfilled: the cylinder retracts again.

Note:  Formulations such as "pulse timer" with the name TP_Y1" mean:
TP_Y1 is a copy of function block type TP, in this case a copy of the
pulse timer.

The function block TON (timer on-delay) is used to generate switch-on
signal delays. After the start via a 1-signal at input IN, output Q does
not assume value 1 until the time specified at input PT has expired, and
retains this until input signal IN returns to 0. If the duration of the input
signal IN is shorter than the specified time PT, the value of the output
remains at 0.

13.3 Switch-on
signal delay

QIN
TON

PTTIME
BOOL BOOL

ET TIME
Q

Fig. B13.5:
Function block TON,
Switch-on signal delay

0

PT

ET

Q

IN

Fig. B13.6:
Timing diagram of
switch-on signal delay TON
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Cylinder 1.0 extends, if start button S1 is actuated. Once this has been
extended for 2 seconds, a second cylinder 2.0 moves to its forward end
position. Sensors B1 and B2 indicate the retracted and the forward end
positions of cylinder 1.0.

Example

Cylinder 1.0 is controlled via valve Y1. As soon as cylinder 1.0 has
extended and sensor B2 has a 1-signal, the switch-on signal delay
TON_Y2 is started. On expiry of 2 seconds, a 1-signal is applied at
output Q of TON_Y2, and cylinder 2.0 extends. Cylinder 2.0 remains
extended so long as the 1-signal is applied at input IN of TON_Y2, i. e.
so long as cylinder 1.0 remains extended.

VAR
S1 AT %IX1 : BOOL; (* Start button *)
B1 AT %IX2 : BOOL; (* Cylinder 1.0 retracted *)
B2 AT %IX3 : BOOL; (* Cylinder 1.0 advanced *)
Y1 AT %QX1 : BOOL; (* Cylinder 1.0 advance *)
Y2 AT %QX2 : BOOL; (* Cylinder 2.0 advance *)
RS_Y1 : RS; (* Flip-flop named RS_Y1 for Y1 *)
TON_Y2 : TON; (* Switch-on signal delay named *)

(* TON_Y2 for Y2  *)
END_VARFig. B13.7:

Declaration of variables

&

B1
S1

RS
S
R1

Q1

RS_Y1

Y1

Y2
TON

IN

PT

Q

TON_Y2

ETT#2s
B2

Fig. B13.8:
Use of switch-on 

signal delay in FBD
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As illustrated by this example, not all inputs and outputs of a function
block need be connected or supplied.

If an input of a function block is not connected – in this case the R1
input of RS_Y1 – the value of the input from the previous invocation is
used. In this case, the initialisation value of the variable R1, which
represents a boolean variable, is therefore preallocated with the value
0, i.e. function block RS_Y1 operates with the value 0 for parameter R1
during its invocation.

TOF (timer off-delay) is the name of the function block for a Switch-off
signal delay. The timer is started via a 1-signal at input IN. At the same
time, the output signal Q assumes the value 1. After the input signal IN
has reverted to the value 0, the output remains at 1 for the duration PT
and does not return to the value 0 until this has expired.

 13.4 Switch-off 
signal delay

QIN
TOF

PTTIME
BOOL BOOL

ET TIME
Q

Fig. B13.9:
Function block TOF, 
switch-off signal delay

0

PT

ET

Q

IN

Fig. B13.10:
Timing diagram of 
switch-off signal delay TOF
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The following example illustrates the use of a switch-off signal delay in
the languages FBD, LD, IL and ST.

Following the actuation of a push button, the cylinder of a stamping
device is to extend momentarily. When the push button is released, the
cylinder is to retract only after a stamping period of 30 seconds.

Example

In all the languages, a copy of the TOF function block TOF_Y1 is in-
voked to realise the switch-off signal delay of the stamping cylinder.

VAR
S1 AT %IX1 : BOOL; (* Switch *)
Y1 AT %QX1 : BOOL; (* Advance cylinder *)
TOF_Y1 : TOF; (* Switch-off signal delay named *)

(* TOF_Y1 for Y1 *)
END_VAR

Fig. B13.11:
Declaration of

variables

b) FBD

c) IL

CAL
LD
ST

TOF_Y1 (IN := S1, PT := T#30s)
TOF_Y1.Q
Y1

a) LD

Y1
TOF

IN

PT

Q

T#30s ET

S1
TOF_Y1

TOF
IN
PT

Q Y1
T#30s ET

TOF__Y1

S1

d) ST

TOF_Y1 (IN :=S1, PT := T#30s);
Y1 := TOF_Y1.Q;

Fig. B13.12:
Use of switch-on signal

delay in FBD
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In the LD language, the function block is attached in a current rung  via
the boolean start input IN and the boolean output Q. If the normally
open contact S1 supplies a 1-signal, a 1-signal also applies at output Q
of TOF_Y1. The value Q is copied to the variable Y1. As soon as the
1-signal of S1 returns to 0, 1 still applies at output Q of TOF_Y1 for the
period of 30 seconds, a 0-signal is supplied subsequently.

In the textual languages IL and ST, the switch-off signal delay is in-
voked by specifying the name TOF_Y1 of the declared copy and listing
the relevant transfer parameters. The status of the switch-off signal
delay can be obtained via output Q. In the example given here, the
status of the switch-off signal delay TOF-Y1 is stored in the variable
TOF_Y1.Q.
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Chapter 14

Counters
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Counters are used to detect piece numbers and events. Controllers
frequently need to operate with counters in practice. A counter is for
instance required, if exactly 10 identical parts are to be conveyed to a
conveyor belt via a sorting device.

14.1 Counter functions

IEC 1131-3 differentiates between three different counter modules:

CTU: Incremental counter
CTD: Decremental counter
CTUD: Incremental/Decremental counter

These standard function modules are used to detect standard, non
time-critical counting.

With many control tasks it is however necessary to use so-called high-
speed counters. "High-speed" in this case generally refers to a counter
frequency in excess of 50 Hz, i. e. more than 50 events are counted
per second. Tasks of this type cannot be solved with the standard
counter function modules of a PLC.

The limitations of counter frequency in counter function blocks are due
to the output signal delays. Each input signal – i.e. also the counter
signal – is delayed by a certain time, before it is released for process-
ing in the PLC. This prevents interference. A further limitation is the
cycle time of the PLC.

This is why additional counter modules are generally available for PLCs
for high-speed counting. High-speed counters are for instance used for
the positioning of workpieces. 

The Incremental counter is known as a CTU (count up). The counter is
set at the initial value 0 by a signal at reset input R.

14.2 Incremental
counter

PV

Q

CV

CU
CTU

RBOOL
BOOL

INT

BOOL

INTFig. B14.1:
Function block CTU,
incremental counter
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This current counter status is available at output CV (current value).
The value in the counter is then increased by 1 with each positive edge
at counter input CU (count up). At the same time the current value is
compared in the function block with the preselect value PV. As soon as
the current value CV is equal to or greater than the preselect value, the
output signal assumes the value 1. Prior to reaching this value, output
Q has a 0-signal.

The following example demonstrates the use of an incremental counter
in the languages FBD, LD, IL and ST.

Parts are to be ejected from a gravity-feed magazine via a cylinder. IF
push button S1 is actuated, the cylinder is to advance, eject a work-
piece and then retract again. 15 parts are to be ejected in this way.
When 15 parts have been ejected, it should no longer be possible to
trigger a cylinder movement via push button S1. First the counter must
be reset by actuating push button S2.

Example

VAR
S1 AT %IX1 : BOOL; (* Push button for cylinder movement *)
S2 AT %IX2 : BOOL; (* Push button for resetting of counter CTU_Y1 *)
B1 AT %IX3 : BOOL; (* Cylinder retracted *)
B2 AT %IX4 : BOOL; (* Cylinder advanced *)
Y1 AT %QX1 : BOOL; (* Advance cylinder *)
Y1_advance

 AT %MX1 : BOOL; (* stored condition: Advance cylinder  *)
CTU_Y1_M

 AT %MX2 : BOOL; (* stores the counter status CTU_Y1 *)
RS_Y1 : RS; (* Flip-flop named RS_Y1 for Y1 *)
CTU_Y1 : CTU; (* Incremental counter named CTU_Y1 for the *)

(* cylinder movements *)
END_VAR Fig. B14.2:

Declaration of variables
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S1 CTU_Y1.QB1

B2 Y1

R

LD
AND
ANDN
ST
CAL
LD
ST
CAL

RS_Y1 ( S := S1 & B1 & NOT CTU_Y1.Q, R1 := B2);

CTU (CU := B2, R := S2, PU := 15);

B2 CTU_Y1_M

S2

Y1

S/

CU

CTU_Y1

Q

R

PV15 CV

PV

Q

CV

CU
CTU

RS2
B2

15

&

B1
S1 RS

S
R1

Q1

RS_Y1

Y1

CTU_Y1.Q B2

CTU_Y1

CTU

Y1 := RS_Y1.Q1;

S1
B1
CTU_Y1.Q
Y1_advance
RS_Y1 (S := Y1_advance, R1 := B2)
RS_Y1.Q1
Y1
CTU_Y1 (CU := B2, R := S2, PU := 15)

b) FBD

a) LD

c) IL

d) ST

Fig. B14.3:
Use of

incremental counter
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A CTU function block (incremental counter) is used in all languages to
realise the counting function; in the actual example the name of the
declared copy is CTU_Y1.

The cylinder is actuated via a valve Y1. The valve itself is switched via
an RS flipflop named RS_Y1. The cylinder advances only if push button
S1 is actuated and the cylinder (B1=1) retracted and not with an ex-
pired counter (CTU_Y1.Q = 0). When the cylinder has reached its for-
ward end position (B2=1), the value of Y1 reverts to 0 and the cylinder
retracts again.

The cylinder strokes are counted via the counter named CTU_Y1. The
counter has a defined status at the beginning of processing, since all
variables are preallocated. This means that if the cylinder is in the initial
position and none of the push buttons are actuated, whereby a 0-signal
is applied at B2 and S2 and thus at the CU and R input; the preselect
value PV is 15, the current counter value CV is 0. The counter has
therefore not yet expired, output Q has the value 0.

Actuation of push button S1 causes the cylinder to extend, the rising
edge of B2 leads to a counting pulse and the current value CV of
CTU_Y1 is increased by 1. When 15 cylinder movements have been
executed, the current counter value CV is equal to the preselect value
PV; the counter has expired and this is indicated by the value 1 at
output Q. The cylinder will not move until the counter resets, i.e. starts
anew. This occurs by actuating push-button S2; the 1-signal at the R-
input sets the actual counter value CV at 0, following this a 0-signal
applies at output Q.

Mention is to be made at this point of a particular feature of the IL
language. In STL, transfer parameters for a function block must be indi-
vidual variables only. Expressions are not permissible. This is why the
AND operation of variables S1, B1 and CTU_Y1.Q is copied to the
boolean variable Y1_advance and these are then used as transfer par-
ameters.
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Function block CTD (count down) is the decremental counter of IEC
1131-3 and represents the counterpart of the incremental counter.

14.3 Decremental
counter

The decremental counter with preselect value PV is loaded with a 1sig-
nal at input LD (load). During normal operation, each positive edge at
input CD (count down) reduces the counter reading. The current
counter reading is also available at output CV in this instance. Output Q
of function block CTD is 0, until the current counter reading CV
becomes less than or equal to 0.

The use of a decremental counter is also demonstrated by a small
example.

A cylinder is moved via a valve Y1. The position of the cylinder is sig-
nalled via the sensors B1 (retracted) and B2 (extended). The cylinder is
to advance, if push button S1 is pressed. When 10 strokes have been
executed in this way, lamp H1 is illuminated and the counter has ex-
pired. The counter must be re-loaded with the preselect value, before
any cylinder movements can be executed further. This is effected by
means of actuating push button S2.

Example

PV

Q

CV

CD
CTD

LDBOOL
BOOL

INT

BOOL

INTFig. B14.4:
Function block CTD,
decremental counter

VAR
S1 AT %IX1 : BOOL; (* Push button for cylinder movement *)
S2 AT %IX2 : BOOL; (* Push button for resetting of counter CTD_Y1 *)
B1 AT %IX3 : BOOL; (* Cylinder retracted *)
B2 AT %IX4 : BOOL; (* Cylinder advanced *)
Y1 AT %QX1 : BOOL; (* Advance cylinder *)
H1 AT %QX2 : BOOL; (* Lamp *)
RS_Y1 : RS; (* Flip-flop named RS_Y1 for Y1 *)
CTD_Y1 : CTD; (* Decremental counter named CTD_Y1 for the *)

(* cylinder movements *)
END_VARFig. B14.5:

Declaration of variables
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The valve Y1 is switched via an RS function block named RS_Y1. The
set condition is met, when the cylinder is retracted, the counter has not
yet expired and push button S1 is actuated. When the cylinder has
extended completely, 0 applies again at output Q1 of RS_Y1. 

The cylinder strokes are detected via a decremental counter named
CTD_Y1. If the cylinder is in the initial position and none of the push
buttons are actuated, the following values are applied at the inputs and
outputs at the start of the decremental counter processing: the CD and
the LD input have a 0-signal, the value 10 applies at input PV; the
current counter value CV is 0, condition CV <= 0 is thus met and a
1-signal applies at output Q. The value 1 at output Q designates the
decremental counter as expired. Lamp H1 is illuminated at the same
time.

The preselect value 10 is not loaded as a current counter value until
push button S2 is pressed. CV is now greater than 0, output Q is also
O and the lamp is off. Cylinder movements may now be triggered by
actuating push button S1. Each movement results in a counting pulse
through the rising edge of B2, which reduces the current counter status
by 1 each time. After 10 completed cylinder strokes the current counter
reading is 0; the counter has expired. This is signalled by the value 1 at
output Q.

Once the counter has been loaded with the start value 10, the counter
operations may be repeated.

PV

Q

CV

CD
CTD

LDS2
B2

10

H1

&

B1
S1 RS

S
R1

Q1

RS_Y1

Y1

CTD_Y1.Q

B2

Fig. B14.6:
Use of decremental
counter in FBD language
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Function block CTUD, Incremental/decremental counter, combines an
incremental and a decremental counter.

14.4 Incremental/
decremental
counter

The value of output QU is calculated in accordance with the equation:
CV ≥ PV, the value of output QD in accordance with the equation CV ≤ 0. 

Please note that the function of the decremental counter should be
used only after the start value has been loaded to the counter via the
command LD.

LD

CV

CU
CTUD

RBOOL

BOOL BOOL

INT

CDBOOL

PVINT

BOOL

QU
BOOLQD

Fig. B14.7:
Function block CTUD,

incremental/
decremental counter
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Chapter 15

Sequence control systems
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Sequence control systems are processes in several, clearly separate
steps. The progression from one step to the next depends on the step
enabling conditions. One important characteristic is that only ever one
step may be active or several steps only if these have been explicitely
programmed as steps to be simultanously executed.

15.1 What is a 
sequence
control system

Compared with a logic control system, it offers the following advan-
tages:

the program is divided into steps and therefore more clearly ar-
ranged and easier to maintain and expand
sequence control systems can easily be programmed graphically in a
sequential function chart
error detection in a process-related, graphically represented sequen-
ce control is more convenient and conclusive than that possible with
logic control systems.

Typical examples for sequence controls are machine controls in the
sphere of production technology or receptive controllers in process
technology.

The need for configuration is not immediately indicated in the case of
small sequence-oriented controllers, but the need for improved func-
tional descriptions increases with the growing complexity of tasks. Lad-
der diagrams and statement lists are poorly suited for structured de-
scription. Function charts (or also flow charts) were introduced as
auxiliary means for top-down analysis and for the representation of pro-
cesses function charts. The elements used for this type of description
and their use have been standardised internationally by IEC 848. The
IEC 848 standard with the addition of national definitions has been pub-
lished in DIN 40 719, P.6.

15.2 Function chart to
IEC 848 or
DIN 40 719, P.6

Function charts describe in the main two aspects of a controller in ac-
cordance with defined rules:

the actions to be executed (commands)
the sequence of execution
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A function chart is therefore divided into two parts (fig. B15.1). The
sequence part represents the time-related execution of the process.

The sequence part does not describe the actions to be executed indi-
vidually. These are contained in the action part of the function chart
which, for the example in question, consists of blocks on the righthand
side of the steps.

N

L

S2

L3

N4

N5

S6

1

0

Part in lifting bracket

Lifting cylinder raise

Lifting cylinder up

Defining thickness  t = 1 s

Timer expired

Ejecting cylinder advance

Ejecting cylinder retract

Lifting cylinder lower

Lifting cylinder down

Timer expired

Initial position

Colour and material definition  t = 0.5 s

Ejecting cylinder advanced

Ejecting cylinder retracted

Fig. B15.1:
Function chart for
a test process
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The following provides a brief explanation of the individual elements
used to describe a function chart.

Steps
A function chart is structured by means of steps. These are represented
by blocks and identified with the respective step number.

The output status of the controller is identified by the initial step.

Each step is assigned actions (commands) containing the actual execu-
tion parts of the controller.

Transitions
A transition is a link from one step to the next. The logic transition
condition associated with the transition is represented next to the hor-
izontal line across the transition. If the condition is met, the transition to
the next step takes place and this is then processed by the controller.

1

2

Initial step

Transition

Step

directed connections

ActionFig. B15.2:
Elements of function chart
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Sequence structures
Three basic forms of sequence structure may be created by means of
combining the step and transition elements:

Linear sequence
Sequence branch (alternative branch)
Sequence splitting (parallel branch)

Steps and enabling conditions must always alternate irrespective of the
form of the sequence structure. Sequence structures are processed
from top to bottom.

In a linear sequence, only one transition follows a step and one step
each transition. Fig. B15.1 illustrates an example of a linear sequence.

In the alternative branch shown in fig. B15.3, two or several transitions
follow a step. The partial sequence, whose transition condition has
been met first, is activated and processed. Since precisely one partial
sequence may be selected with the alternative branch, the transition
conditions – d and g in fig. B15.3  – must be mutually exclusive.

2

3

d

4

e

f

5

h

g

6

i Fig. B15.3:
Alternative branch
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In the case of a parallel branch, of the transition condition is met, this
leads to the simultaneous activation of several partial sequences. The
partial sequences are evolved simultaneously, but completely inde-
pendently of one another. The convergence of partial sequences is syn-
chronised. Only when all parallel partial sequences have been evolved,
may a transition to the next step underneath the double line – in this
example to step 7 – take place.

Action
Each step contains actions, the actual execution parts of the controller.
The action itself (fig. B15.5) is divided into three fields, whereby field a
and c should only be represented if necessary.

Table B15.1 contains the symbols defined in DIN 40 719, P.6 or IEC
848 used to describe the order of execution of the actions.

2

3

4

e

g

5

f

7

d

6

Fig. B15.4:
Parallel branch

a b c

b:  Description of action

c:  Reference to all feedbacks associated with command

a:  Characterisation of actions to be executed

Fig. B15.5:
Action
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If an action needs to be described in more detail, a combination of
letter symbols should be selected in the order of this execution.

DCSF
conditionally stored action after delay, subject to an additional enabling
condition after storage.

Example

Step refinement
As shown in fig. B15.6, each step may itself contain sequence struc-
tures. This facility is supported by the step-by-step refinement of a solu-
tion in the sense of a top-down design.

S stored

N non-stored

D delayed

F enabling

L limited

P pulse

C conditional
Table B15.1:
Mode of actions

N

S

S

S
S

2.4

S

S2.5

2

2.2

2.3

2.1

Part accepted and part release requested

Part in magazine and gripper
in position 1 and ejecting cylinder retracted

Part released

Part released

Ejecting cylinder in

Gripper to position 2

Gripper in position 1

Start

Release part

Filling magazine

Ejecting cylinder out

Part ejected

Grip part

Fig. B15.6:
Step refinement
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The displacement-step diagram represents a sequence control graphi-
cally. The structure of a diagram of this type is described in VDI 3260.

15.3 Displacement-step
diagram

The individual actuators and sensors are configured vertically in the
diagram, and the individual steps of the controller horizontally. A func-
tion line indicates the signal status of the corresponding signalling
element in each step. Signal lines link the individual function lines and
indicate which signalling element in the process triggers which action.
An arrow indicates the direction of action. The diagram is further clari-
fied by symbols.

The displacement-step diagram is generally drawn up by the design
engineer of a machine or system. When solving a control task, it is
useful to design the displacement-step diagram prior to the programm-
ing.

1 2 3 4 5 6 7 8 9 10

M2 0

1B2

1B1

1

M1

3B7 3B7

2B4

3B5

3B6

0

1

2B3

3B7

<

3B8

1 s
t t

1 s

1 s
t

Z2

Z3

Z1

3B7

<

3B8

Description Signal
Desig-
nation

Time

Step
Components

Rotary indexing
table motor

Drilling cylinder

Drilling machine

Clamping cylinder

Test cylinder

Fig. B15.7:
Structure of a

displacement-step diagram
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Chapter 16

Commissioning and 
operational safety of a PLC
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PLC programs are never final in that it is always possible to make cor-
rections and subsequent adaptations to new system requirements.

16.1 Commissioning

Even during commissioning, program changes are often necessary.
The commissioning of a system can be divided into basically four steps:

Checking the hardware
Transferring and testing the software
Optimisation of software
Commissioning of the system

Checking the hardware
Each sensor is connected to a specific input and each actuator to an
output; addresses must not be mixed up. 

This is why the first step in checking the hardware always comes after
the allocation list. Are all the sensors and actuators allocated to the
right input and output addresses? Is the function – for 0- and 1-signal –
identified uniquely. The allocation list must be correct and completed in
full as this forms part of the documentation prior to the commissioning
of a program.

During checking, the outputs are set by way of a test. The actuators
must then meet the functions specified.

Transferring and testing of software
Even prior to commissioning, all available off-line testing facilities of the
program system should be used intensively. One such convenient test
function is for instance, the simulation of the program.

Following this, the program is transferred to the central control unit of
the PLC. A small number of PLCs now offer a facility for simulation:
The entire program is executed without the inputs and outputs being
connected. Similarly, only the connection of the outputs may be
omitted. Processing of the PLC outputs thus only takes place in the
image table, in that the image table is not switched through to the
physically available outputs. This therefore eliminates the risk of da-
maging machines or system parts, which is of particular importance in
the case of dangerous or critical processes.
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After this, the individual program parts and system functions are tested:
Manual operation, setting, individual monitoring programs etc., and
finally the interaction of the program parts with the help of the overall
program.

The system is therefore commissioned step-by-step. Important aspects
of commissioning and error detection are test functions of the pro-
gramming system such as single-step mode or the setting of stop
points. Single-step mode  in particular is of importance, whereby the
program in the PLC memory is executed line-by-line or step-by-step. In
this way, any errors which may occur in the program can be immedi-
ately localised.

Optimisation of software
Larger programs can almost always be improved after the first test run.
It is important that any corrections or modifications are made not just in
the PLC program, but are also taken into account in the documentation.
Apart from the documentation, the status of the software has to be
saved.

Commissioning of the system
This already occurs in part during the testing and optimisation phase.
Once the final status of PLC program and the documentation is estab-
lished,  all the controller functions (in accordance with the task) need to
be executed step for step again. The system is then ready to be ac-
cepted by the customer or the relevant department.
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PLC voltage supply
Differentiation must be made between Control voltage  (signals be-
tween controlled machine and the PLC) and the Logic voltage  (for the
internal voltage supply of the central control unit).

16.2 Operational
safety of a PLC

The level of the operating voltage of a PLC is specified in DIN
IEC 1131/ Part 2. It is between 24VDC and 48VDC or 48VAC and
230VAC respectively. 120VAC may also apply for the American market.

Control voltage
The control voltage supplies the sensors and actuators. The user needs
to connect a power supply unit to the controller for this. In Germany,
the control voltage of a PLC is generally 24VDC or 230VAC. (In the
main, DC voltage is used.) In other countries, different voltages are
also used, e.g. 48VDC voltage or 120VAC voltage. How exactly the
power supply unit is connected to the controller varies according to the
PLC used.

The control voltage permits a certain amount of variation. The PLC mo-
dules are in the main protected against excessive voltages, depending
on the module through which the central control unit is realised.

Logic voltage
In addition, a PLC requires a voltage supply for the internal logic: The
logic voltage, which forms the signals in the central control unit. This is
why the logic voltage must meet very high requirements, i.e., it needs
to be stabilised. Either 5 V (TTL level) is used for this or approx, 10 V
(CMOS level), depending on the module through which the central con-
trol unit is realised.

There are three possibilities of Voltage supply :

1. Control voltage and logic voltage are generated completely separa-
tely from the mains voltage.

2. Two power supply units combined in one housing for the gener-
ation of the two voltages.

3. The logic voltage is generated from the control voltage (not the
mains voltage).
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Interference suppression
All PLCs are extremely sensitive to voltage supply interference. Dif-
ferentiation should be made between to different versions:

Interferences reaching the logic voltage from the voltage supply via
the power supply unit;
Interferences, affecting the lines to and from the sensors and actua-
tors.

1. Interferences in the logic voltage
A main interference suppression filter and a capacitor protect
against interferences of this type. The mains interference 
suppression filter protects against overvoltages and interference
signals from voltage supply. A capacitor stores electrical energy,
whereby the controller voltage supply is protected even in the
event of brief voltage failures.

If this type of voltage suppression has not been provided by 
the PLC manufacturer, a mains interference suppression filter
and capacitor is to be fitted subsequently by the user.

2. Line interferences to and from sensors and actuators
Interference pulses on electrical lines may cause a 1- or 0-
signal to occur at PLC inputs, which has not be supplied by a 
sensor. The signal may be created as a result of effects from
other cables.

This kind of interference is dangerous: As a rule, input modules of a
PLC are therefore protected by means of a series connected 
optocoupler and signal delay. The optocoupler protects against
overvoltages of up to approx. 5000 V. The signal delay prevents
spurious signals, since these are generally very brief. The
length of time varies between 1 and 20 ms depending on the
PLC. “High speed” input modules (without signal delay) must be
shielded, for example, by screened cables.
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Output modules also contain an optocoupler for protection against over-
voltages. Moreover, the outputs are short-circuit protected, though nor-
mally not against sustained short-circuit.

Mutual induction voltage
When inductive actuators (e.g. safety coils, solenoid coils) are switched,
it creates a mutual induction voltage at the coil.

This mutual induction voltage must be eliminated to protect the output
module. A suppressor diode is used for this. The output modules of a
number of PLCs are already equipped with suppressor diodes of this
type. The residual voltage in this case, however, remains an inter-
ference factor on the interconnecting cables. This is why the protective
measures should be taken direct at the point of origin, i.e. on the coil:
by means of a suppressor diode  (for DC voltage only) or a varistor
(voltage-dependent resistor). Two reverse polarity and Zener diodes
switched parallel to the coil may also be used. With a voltage in excess
of 150 V, however, several breakdown diodes must be switched in
series.

EMERGENCY-STOP
If the EMERGENCY-STOP device is actuated, it is essential for a con-
dition to be achieved, which is harmless both for people and system.
Final control elements and drives, which may produce dangerous situ-
ations, must be switched off immediately (e.g. spindle drives). Conver-
sely, final control elements and drives, which may prove dangerous to
people or the system when  switched off, must continue operating even
in an emergency (e.g. clamping devices). The facility to operate an
EMERGENCY-STOP must be available at any given time in a system.

This is why a standard electronic controller may not assume the EMER-
GENCY-STOP function. The EMERGENCY-STOP circuit must be es-
tablished independently of the PLC by means of contactor technology.
DIN 57116 also specifies this, since it would be impossible to switch an
EMERGENCY-STOP with a malfunctioning controller.

Once the EMERGENCY-STOP device has been unlatched, it should be
no longer possible for machinery to operate automatically.
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An output transistor of the PLC is burnt out. A voltage of 24 V applies
permanently at the output (corresponding to a 1-signal). The solenoid
value is actuated; the cylinder extends, even though the system has not
been enabled. If the EMERGENCY-STOP command were to be ex-
ecuted by the PLC program, it would remain inactive, since the error
only occurs "after" the program. The EMERGENCY-STOP command
must therefore take effect downstream of the PLC as far as the cylin-
der.

Example

One method is to connect the EMERGENCY-STOP function to the volt-
age supply of the output modules. The connection must be fail-safe. In
the event of an EMERGENCY-STOP, all outputs assume the 0-signal.
It is of no importance whether a particular output has been set or reset
by the PLC.

If this method is employed, the connected actuators must move into a
non hazardous position in the event of a 0-signal! The following actua-
tors should be used if possible:

Hydraulic/pneumatic valves:
5/4- or 5/3-way valves with mid-position normally closed are used
(poss. with additional clamping cylinder). These valves clamp the cylin-
der between fluid or air cushions. Correct connection: Short paths from
cylinder to valve, restrictors in exhaust air of the valve.

Electric motors:
Brake motors are used. In the event of voltage failure, the brake comes
into full effect as a result of spring force.

The EMERGENCY-STOP circuit in the Hardware  carries out the actual
safety function. In addition, the EMERGENCY-STOP command must
also be stored in the PLC program . Whatever has been effected be-
yond the PLC by way of hardware must be retraced in each program: in
this case, switching off the outputs. This is defined in a parallel pro-
gram. Once the EMERGENCY-STOP has been reset, the system
should not be able to start again on its own. A separate push but-
ton/switch is to be actuated to start the system.
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The re-starting of the system may be controlled by means of the PLC
program. There are two methods for starting:

Continuing from the same point;
Returning to the initial position and re-starting the machine.

In the second instance, it is necessary to switch over to manual or
setting mode.

If additional safety measures  are required for EMERGENCY-STOP,
user’s own relays  or pneumatic controllers  must be used. A special
safety-oriented PLC may also be used, which operates by means of
two separate central control units with two series connected output
stages each.

Fail-safe connection
The majority of machines are switched on by means of one push button
and switched off via another push button. The OFF push button  addi-
tionally assumes a safety function: The working process may be inter-
rupted at any time and the machine stopped. With EMERGENCY-
STOP, however, the entire system is switched off. In contrast with
EMERGENCY-STOP, the OFF function is controlled via the PLC.

It should be noted, however, that the OFF function must be maintained
even if the wiring of the OFF button is defective. The connection must
be fail-safe ; i.e. the OFF button is to be connected and programmed in
the form of a normally closed contact . (The allocation list provides
information regarding the significance of the 1- and 0-signal!)

A signal generator monitors the oil temperature of a gear unit. For
safety reasons, the connection of the signal generator is to be fail-safe:
The 1-signal identifies the correct temperature, the 0-signal the incor-
rect temperature. If the connection is defective, the signal generator
also assumes a 0-signal (even if in this case the cause is not the incor-
rect temperature).

Example 

This eliminates the situation, where a critical condition in the system is
no longer signalled by the signal generator because of defective wiring.
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Chapter 17

Communication
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By communication, we understand the transfer of information i.e. data
between the programmable logic controller and other data processing
devices, whereby these devices are used as an auxiliary means for
specific control tasks, e. g. input of data takes place via a computer,
output of data via a printer controlling still remains the task of the PLC.

17.1 The need for 
communication

Automation increases the need for communication. Data needs to be
continually passed on from production to other operational areas. This
provides an overview of the production status and the individual tasks
(production data acquisition).

Automated systems nowadays are equipped with complex error and
fault detection systems. Fault indications and warnings must be gener-
ated, centralised and communicated automatically to the operator. To
this end, a printer – for logging – or an electronic display is connected
to the controller.

In some cases, data is to be transferred to the PLC by a computer in
an active process, or several control devices are combined into one
system network.

How can the PLC communicate with other data processing devices?
The individual bits, which are combined into one data word, must be
transmitted from one piece of data terminal equipment to another.

17.2 Data
transmission

Basic differentiation is made here between two methods: parallel or ser-
ial data transmission.

Parallel data transmission means that a separate line must be available
for each individual binary signal. When signal generators for example,
are connected to a programmable logic controller, a separate wire is
installed for each push button, limit switch, limiting value encoder and
sensor to a terminal strip and from there to the input of the PLC. All
information (“push button actuated”, “cylinder advanced”) can in this
way be transmitted simultaneously (parallel) to the PLC. Since in the
case of parallel transmission of input and output signals, a line is re-
quired for each signal generator, literally miles of cable bundles are
installed overall for correspondingly complex machines.

For the parallel transmission of a data word, sufficient lines must there-
fore be available to transmit all bits of this data word simultaneously.

With serial  data transmission only one binary signal is transmitted at a
time. Again, using the example of the PLC: If several modules of a PLC
are interconnected, it is not necessary for a individual line to be in-
stalled for each input or output, instead the information regarding inputs
or outputs is transmitted consecutively (serial).
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Accordingly only one data line is therefore required for the serial
tansmission of data words, irrespective of the number of bits, to trans-
mit the binary signals consecutively. In order to now be able to repre-
sent the various signals in the form of a related data word, it is necess-
ary to agree the transmission speed, word length and specific start and
end characters.

Different coding procedures, transmission and operating methods  as
well as different methods of data protection make it essential to define
electrical, functional and mechanical characteristics of interfaces in
standards.

17.3 Interfaces

A parallel interface is also known as a Centronics interface. 8 data lines
are available for data transmission, i.e. 8 bits may be transmitted simul-
taneously. The Centronics interface is very frequently used – over small
distances – for the  actuation of printers.

Voltage interfaces Current
interface

Designation V.24 Centronics 20 mA

Transmission
mode

serial
asynchronous

parallel serial
asynchronous

Mode of operation full duplex simplex full duplex

Standard V.24
RS-232-C

Centronics
TTL

TTY

Transmission
distance,
transmission speed

up to 30 m
20 000 bit/s

up to 2 m
106 bit/s

up to 1000 m
20 000 bit/s

Logic level
Data line

15 V ≥ ’0’ ≥ 3V
-3 V ≥ ’1’ ≥ -15 V

’1’ ≥ 2.4 V
’0’ ≥ -0.8 V

’1’ = Current off
’0’ = Current on

Table B17.1:
Interfaces
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The most frequently used interface for serial data transmission is the
V.24 interface.

The Centronics and V.24 interface are both voltage interfaces. Bits are
represented for ’0’ or ’1’ via a specified voltage level. In order to create
this signal level, a joint ground line must be incorporated for the V.24
interface. In the case of a Centronics interface, each data line has its
own ground line.

In the case of both interfaces, additional lines have been defined for
data flow control apart from the data and ground lines.

Considerably more simple than via a V.24 interface is a connection
configured via a serial 20 mA interface. All this current-loop interface
needs is a transmitter and receiver loop for the transmission of data. A
constant current of 20 mA signals the ’0’level (logic0), "current off" sig-
nals the ’1’level (logic1) on the data line. This interface is widely used in
control technology due to its interference immunity.

A multitude of information has to be transported within automated sys-
tems and machines. Simple binary sensor signals, analogue signals of
measuring sensors or proportional valves, and also recorded data and
parameters for the control of processes need to be exchanged reliably
between the control technology components of an automated system.

17.4 Communication
in the field area

The data exchange for this must take place within specified reaction
times, since system parts could otherwise continue to operate uncon-
trolled.

A fieldbus is a serial, digital transmission system for these signals and
data. All stations on a fieldbus must be in a position to receive the
communication from other bus stations and to exchange data in accord-
ance with the agreed protocol. A bus station, taking the initiative for the
data exchange is known as a master. Bus stations receiving or sup-
plying data purely on the instruction of the master are termed slaves.

Two-wire cables consisting of either twisted pairs or coaxial cables are
used for the transmission of data in bus systems. The extent of wiring
for bus coupled systems is therefore minimal.
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A multitude of different bus systems is available in the market place,
which can basically be divided into 2 groups: closed and open bus sys-
tems.

By closed systems  we understand systems, which are

vendor-specific,
do not have any transmission protocol disclosure and
are not compatible. Furthermore, they do not permit interfacing with
devices of other manufacturers and adaptation associated with high
expenditure.

Closed systems, for instance, are SINEC L1 by Siemens, SUCOnet K
by Klöckner-Moeller, Data Highway by Allen Bradley, Festo Feldbus,
Modnet by AEG/MODICON.

Open systems , in contrast have

standardised interfaces and protocols,
declared protocols and
a multitude of devices by different manufacturers may be connected
to the bus.

Open systems, for instance, are Profibus, Interbus-S, CAN, SINEC L2,
ASI.

The advantages of networking with open bus systems are as follows:

Decentralisation of control function
Coordination of processes in separate areas
Realisation of control and production data flow
parallel to material flow
Simplification of the installation and
reduction of wiring costs (two-wire bus)
Simplification of the commissioning of a system
(greater clarity, pretested subsystems)
Reduction in service costs
(central system diagnostics)
Use of equipment by different manufacturers 
in the same network
Process data transmission right up to planning level
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Fig. B1.2: Example of a PLC: AEG Modicon A120
AEG Schneider Automation GmbH,
Steinheimer Straße 117, 63500 Seligenstadt

Bibliography
of illustrations

Fig. B1.4: Compact PLC (Mitsubishi FX0)
Mitsubishi Electric Europe GmbH,
Gothaer Straße 8, 40880 Ratingen

Fig. B1.4: Modular PLC (Siemens S7-300) 
Siemens AG,
AUT 111, Postfach 4848, 90475 Nürnberg

Kostka, Winfried Dictionary of control technology
German-English/English-German
Festo Didactic KG, Esslingen, 1988

Bibliography
 of literature

Lexicon of control technology
Festo Didactic KG, Esslingen, 1988

DIN VDE 0113/ Electrical equipment of industrial machinery;Guidlines and
EN 60204 General definitionsstandards

IEC 1131/ Programmable logic controllers;
DIN EN 61131 Part 1: General information

Part 2: Equipment, requirements and tests
Part 3: Programming languages
Part 4: User guidelines (in preparation with ICE)
Part 5: Messaging service specification
(in preparation with ICE)

DIN IEC 113 Circuit documentation;
Part 7: Use of circuit symbols for binary elements
in circuit diagrams

IEC 848 Preparation of function charts for control systems
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